Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-23T14:00:33.477Z Has data issue: false hasContentIssue false

Host cell invasion by Apicomplexa: an expression of the parasite's contractile system?

Published online by Cambridge University Press:  06 April 2009

D. G. Russell
Affiliation:
Department of Pure and Applied Biology, Imperial College, London SW1 2AZ

Summary

Recent studies on the motility of coccidian sporozoites have demonstrated a membrane-associated contractile system capable of moving certain intramembraneous components down the parasite surface propelling it forwards. The properties of this system resemble recorded observations on host cell invasion. In this study the invasive behaviour of Eimeria tenella and E. acervulina has been examined, with reference to the above findings, by light microscope and scanning and transmission electron microscopes. Known inhibitors of motility prevent invasion, though attachment appears unaffected. Invasion itself consists of 3 phases; attachment and orientation, induction of a parasitophorous vacuole and translocation of the parasite into the vacuole. Ultrastructural examination reveals a close membrane/membrane association maintained throughout invasion. From these results it is suggested that the parasite enters the parasitophorous vacuole by ‘capping’ the host/parasite junction down its body, so locomoting into the host cell. Such a model has two main advantages; it requires no additional modifications to either cell, and the specificity of membrane receptors would enable the one membrane-associated contractile system to be responsible for locomotion, antibody capping and host cell invasion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M., Miller, L. H., Johnson, J. & Rabbege, J. (1978). Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. Journal of Cell Biology 77, 7282.CrossRefGoogle ScholarPubMed
Aikawa, M., Miller, L. H., Rabbege, J. & Epstein, N. (1981). Freeze fracture study on erythrocyte membrane during malarial parasite invasion. Journal of Cell Biology 91, 5562.CrossRefGoogle Scholar
Bannister, L. H., Butcher, G. A. & Mitchell, G. H. (1977). Recent advances in understanding the invasion of erythrocytes of Plasmodium knowlesi. Bulletin of the World Health Organization 55, 163–9.Google Scholar
Chbouki, N. & Dubremetz, J-F. (1982). Structure, isolation and protein composition of the Sarcocystis muris cystozoite pellicle. Molecular and Biochemical Parasitology Suppl 1. Abstracts of the Fifth International Congress of Parasitology, p. 602.Google Scholar
D'Haese, J., Mehlhorn, H. & Peters, N. (1977). Comparative study of pellicular structures in coccidia. International Journal for Parasitology 7, 505–18.Google Scholar
Dubremetz, J-F. & Ferreira, E. (1978). Capping of cationised ferritin by coccidian zoites. Journal of Protozoology 25, 9B.Google Scholar
Dubremetz, J-F. & Torpier, G. (1978). Freeze fracture study of the pellicle of an eimerine sporozoite. Journal of Ultrastructural Research 62, 94109.Google Scholar
Garnham, P. C. C. (1966). Locomotion in the parasitic protozoa. Biological Reviews 41, 561–86.CrossRefGoogle ScholarPubMed
Hartwig, J. H., Yin, H. L. & Stossel, T. P. (1980). Contractile proteins and the mechanism of phagocytosis in macrophoges. In Mononuclear Phagocytes vol. 2, (ed. Van Firth, R.) pp. 971995. The Hague, Boston and London: Martinus Nïjhoff.Google Scholar
Jahn, T. L. & Bovee, E. C. (1968). Locomotion of blood protists. In Infectious Blood Diseases of Man and Animals vol. 1. (ed. Weinman, D. and Ristic, M.). New York: Academic Press.Google Scholar
Jensen, J. B. & Hammond, D. M. (1975). Ultrastructure of the invasion of Eimeria magna sporozoites into cultured cells. Journal of Protozoology 22, 411–15.CrossRefGoogle ScholarPubMed
Jensen, J. B. & Edgar, S. A. (1976). Effects of antiphagocytic agents on penetration of Eimeria magna sporozoites into cultured cells. Journal of Parasitology 62, 203–6.Google Scholar
Jensen, J. B. & Edgar, S. A. (1978). Fine structure of penetration of cultured cells by Isopora canis sporozoites. Journal of Protozoology 25, 169–73.CrossRefGoogle Scholar
Jones, T. C., Yeh, S. & Hirsch, J. G. (1972). The interaction between Toxoplasma gondii and mammalian cells. (Mechanism of entry and intracellular fate of the parasite). Journal of Experimental Medicine 136, 1157–72.Google Scholar
Kilejian, A. (1974). A unique histidine-rich polypeptide from the malarial parasite Plasmodium lophurae. Journal of Biological Chemistry 249, 4650–5.Google Scholar
Kilejian, A. (1976). Does a histidine-rich protein from Plasmodium lophurae have a function in merozoite penetration ? Journal of Protozoology 23, 272–7.Google Scholar
King, C. A. (1981). Cell surface interaction of the protozoan Gregarina, with concanavalin A beads–implicatons for models for gregarine gliding. Cell Biology International Reports 5, 297305.CrossRefGoogle ScholarPubMed
Lycke, E., Carlberg, K. & Norrby, R. (1975). Interactions between Toxoplasma gondii an its host cell: Function of the penetration enhancing factor of Toxoplasma. Infection and Immunity 11, 853–61.Google Scholar
Miller, L. H., Aikawa, M., Johnson, J. G. & Shiroishi, T. (1979). Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. Journal of Experimental Medicine 149, 172–84.Google Scholar
Porchet, E. & Torpier, G. (1977). Etude du germe infectieux de Sarcocystis tenella et Toxoplasma gondii par la technique du cryodécapage. Zeitschrift für Parasitenkunde 54, 101–24.CrossRefGoogle Scholar
Porchet, E. & Vivier, E. (1971). Ultrastructure comparee de germes infectieux chez les Sporozoaires. Année Biologique 10, 77113.Google Scholar
Roberts, W. L. & Hammond, D. M. (1970). Ultrastructural and cytological studies of four Eimeria species. Journal of Protozoology 17, 7686.Google Scholar
Roberts, W. L., Speer, C. A. & Hammond, D. M. (1971). Penetration of Eimeria larimerensis sporozoites into cultured cells as observed with light and electron microscopes. Journal of Parasitology 57, 615–25.Google Scholar
Russell, D. G. (1982). The role of the cytoskeleton in the motility of coccidian sporozoites. Ph.D. thesis, University of London.Google Scholar
Russell, D. G. & Sinden, R. E. (1981). The role of the cytoskeleton in the motility of coccidian sporozoites. Journal of Cell Science 50, 345–59.Google Scholar
Russell, D. G. & Sinden, R. E. (1982). Three-dimensional study of the intact cytoskeleton of coccidian sporozoites. International Journal for Parasitology 12, 221–6.CrossRefGoogle ScholarPubMed
Ryning, F. W. & Remington, J. S. (1978). Effect of cytochalasin D at Toxoplasma gondii cell entry. Infection and Immunity 20, 739–43.Google Scholar
Sheterline, P. (1980). Cell surface motility: interactions between membrane proteins and the cytoskeleton. In Microtubules and Microtubule Inhibitors (ed. DeBrabander, M. and DeMey, J.) pp. 461481. Amsterdam and New York: Elsevier/North Holland.Google Scholar
Sinden, R. E. (1978). Cell Biology. In Rodent Malaria (ed. Killick-Kendrick, R. and Peters, W.), pp. 85168. New York: Academic Press.Google Scholar
Werk, R. & Bommer, W. (1980). Toxoplasma gondii: membrane properties of active energy-dependent invasion of host cells. Tropenmedizin und Parasitologic 31, 417–20.Google Scholar