Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T23:15:48.989Z Has data issue: false hasContentIssue false

High cold tolerance through four seasons and all free-living stages in an ectoparasite

Published online by Cambridge University Press:  08 February 2012

LAURA HÄRKÖNEN*
Affiliation:
Department of Biology, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
ARJA KAITALA
Affiliation:
Department of Biology, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
SIRPA KAUNISTO
Affiliation:
Department of Biology, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland
TAPANI REPO
Affiliation:
Finnish Forest Research Institute, PO Box 68, FI-80101 Joensuu, Finland
*
*Corresponding author: University of Oulu, Department of Biology, PO Box 3000, FI-90014 Oulu, Finland. Tel: +358 8 553 1221. Fax: +358 8 553 1061. E-mail: laura.harkonen@oulu.fi

Summary

Off-host stages of temperate parasites must cope with low temperatures. Cold tolerance is often highest in winter, as a result of diapause and cold acclimation, and low during the active summer stages. In some blood-feeding ectoparasites, offspring provisioning determines cold tolerance through all the non-feeding, off-host stages. Large size increases survival in the cold, but so far seasonal variation in within-female offspring size has not been associated with offspring cold tolerance. The deer ked (Lipoptena cervi) reproduces on cervids from autumn to spring. Newborn pupae drop off the host, facing frosts without any acclimation. We examined cold tolerance through 4 seasons and from birth to adulthood by means of short- and long-term frost exposure. We expected females to produce more tolerant offspring in winter than in spring. Large spring pupae survived prolonged frosts better than did small winter pupae. Thus more tolerant offspring were not produced when the temperature outside the host is at its lowest. Unexpectedly, the freezing points were −20°C or below all year round. We showed that high cold tolerance is possible without acclimation regardless of life stage, which presumably correlates with other survival characteristics, such as the starvation resistance of free-living ectoparasites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ansart, A. and Vernon, P. (2004). Cold hardiness abilities vary with the size of the land snail Cornu aspersum. Comparative Biochemistry and Physiology – Part A: Molecular and Integrative Physiology 39, 205211.CrossRefGoogle Scholar
Bale, J. S. and Hayward, S. A. L. (2010). Insect overwintering in a changing climate. The Journal of Experimental Biology 213, 980994. doi: 10.1242/jeb.037911.CrossRefGoogle Scholar
Bale, J. S., Worland, M. R. and Block, W. (2001). Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle. Journal of Insect Physiology 47, 11611167. doi: 10.1016/S0022-1910(01)00097-X.CrossRefGoogle ScholarPubMed
Bennett, V. A., Pruitt, N. L. and Lee, R. E. Jr. (1997). Seasonal changes in fatty acid composition associated with cold hardening in third instar larvae of Eurosta solidaginis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 167, 249255. doi: 10.1007/s003600050071.CrossRefGoogle Scholar
Bowler, K. and Terblanche, J. S. (2008). Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biological Reviews 83, 339355. doi: 10.1111/j.1469-185X.2008.00046.x.CrossRefGoogle ScholarPubMed
Chen, C.-P., Denlinger, D. L. and Lee, R. E. (1987). Cold injury and rapid cold-hardening in the flesh fly, Sarcophaga crassipalpis. Physiological Zoology 60, 297304.CrossRefGoogle Scholar
Czajka, M. C. and Lee, R. E. (1990). A rapid cold-hardening response protecting against cold shock injury in Drosophila malanogaster. Journal of Experimental Biology 148, 245254.CrossRefGoogle Scholar
Colinet, H., Hance, T. and Vernon, P. (2006). Water relations, fat reserves, survival and longevity of a cold-exposed parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae). Environmental Entomology 35, 228236. doi: 10.1603/0046-225X-35.2.228.CrossRefGoogle Scholar
Danks, H. V. (1987). Insect Dormancy: an Ecological Perspective. Entomological Society of Canada, Ottawa, Canada.Google Scholar
Dautel, H. and Knülle, W. (1997). Cold hardiness, supercooling ability and causes of low-temperature mortality in Argas reflexus and Ixodes ricinus (Acari: Ixodoidea) from Central Europe. Journal of Insect Physiology 43, 843854.CrossRefGoogle Scholar
Fischer, K., Brakefield, P. M. and Zwaan, B. J. (2003). Plasticity in butterfly egg size: Why larger offspring at lower temperatures? Ecology 84, 31383147.CrossRefGoogle Scholar
Haarløv, N. (1964). Life cycle and distribution pattern of Lipoptena cervi (L.) (Dipt., Hippobosc.) on Danish deer. Oikos 15, 93129.CrossRefGoogle Scholar
Hahn, D. A., Martin, A. R. and Porter, S. D. (2008). Body size, but not cooling rate, affects supercooling points in the red imported fire ant, Solenopsis invicta. Environmental Entomology 37, 10741080.CrossRefGoogle Scholar
Härkönen, L., Härkönen, S., Kaitala, A., Kaunisto, S., Kortet, R., Laaksonen, S. and Ylönen, H. (2010). Predicting range expansion of an ectoparasite – the effect of spring and summer temperatures on deer ked (Lipoptena cervi, Diptera: Hippoboscidae) performance along a latitudinal gradient. Ecography 33, 906912. doi: 10.1111/j.1600-0587.2009.05890.x.CrossRefGoogle Scholar
Heikkinen, S. (2000). Hirven vuosi. Suomen Riista 46, 8291. [In Finnish.]Google Scholar
Heinrich, B. (1999). The Thermal Warriors: Strategies of Insect Survival. Harvard University Press, Cambridge, MA, USA.Google Scholar
Kaitala, A., Kortet, R., Härkönen, S., Laaksonen, S., Härkönen, L., Kaunisto, S. and Ylönen, H. (2009). Deer ked, an ectoparasite of moose in Finland: A brief review of its biology and invasion. Alces 45, 8588.Google Scholar
Kaunisto, S., Härkönen, L., Niemelä, P., Roininen, H. and Ylönen, H. (2011). Northward invasion of the parasitic deer ked (Lipoptena cervi), is there geographical variation in pupal size and development duration? Parasitology 138, 354363. doi: 10.1017/S0031182010001332.CrossRefGoogle ScholarPubMed
Kaunisto, S., Kortet, R., Härkönen, L., Härkönen, S., Ylönen, H. and Laaksonen, S. (2009). New bedding site examination-based method to analyse deer ked (Lipoptena cervi) infection in cervids. Parasitology Research 104, 919925.CrossRefGoogle ScholarPubMed
Knight, J. D., Bale, J. S., Franks, F., Mathias, S. F. and Baust, J. G. (1986). Insect cold hardiness – supercooling points and prefreeze mortality. Cryo Letters 7, 194203.Google Scholar
Koštál, V. and Šimek, P. (1995). Dynamics of cold hardiness, supercooling and cryoprotectants in diapausing and non-diapausing pupae of the cabbage root fly, Delia radicum L. Journal of Insect Physiology 41, 627634.CrossRefGoogle Scholar
Krasnov, B. R., Burdelova, N. V., Shenbrot, G. I. and Khokhlova, I. S. (2002). Annual cycles of four flea species in the central Negev desert. Medical and Veterinary Entomology 16, 266276. doi: 10.1046/j.1365-2915.2002.00374.x.CrossRefGoogle ScholarPubMed
Langley, P. A. and Clutton-Brock, T. H. (1998). Does reproductive investment change with age in tsetse flies, Glossina morsitans morsitans (Diptera: Glossinidae)? Functional Ecology 12, 866870.CrossRefGoogle Scholar
Leather, S. R., Walters, K. F. A. and Bale, J. S. (1993). The Ecology of Insect Overwintering. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Lee, R. E. and Denlinger, D. L. (1985). Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiological Entomology 10, 309315.CrossRefGoogle Scholar
Lehane, M. (2005). The Biology of Blood-Sucking in Insects. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Matsuo, Y. (2006). Costs of prolonged diapause and its relationship to body size in a seed predator. Functional Ecology 20, 300306.CrossRefGoogle Scholar
McGinley, M. A., Temme, D. H. and Geber, M. A. (1987). Parental investment in offspring in variable environments: Theoretical and empirical considerations. American Naturalist 130, 370398.CrossRefGoogle Scholar
Mousseau, T. A. and Dingle, H. (1991). Maternal effects in insect life histories. Annual Review of Entomology 36, 511534. doi: 10.1146/annurev.en.36.010191.002455.CrossRefGoogle Scholar
Nieminen, P., Paakkonen, T., Eerilä, H., Puukka, K., Riikonen, J., Lehto, V.-P. and Mustonen, A.-M. (2012). Freezing tolerance and low molecular weight cryoprotectants in an invasive parasitic fly, the deer ked (Lipoptena cervi). Journal of Experimental Zoology 317A, 18. [Published online 10 NOV 2011]. doi: 10.1002/jez.722.CrossRefGoogle Scholar
Ohtsu, T., Kimura, M. T. and Katagiri, C. (1998). How Drosophila species acquire cold tolerance: Qualitative changes of phospholipids. European Journal of Biochemistry 252, 608611. doi: 10.1046/j.1432-1327.1998.2520608.x.CrossRefGoogle ScholarPubMed
Parker, G. A. and Begon, M. (1986). Optimal egg size and clutch size: effects of environment and maternal phenotype. American Naturalist 128, 573592.CrossRefGoogle Scholar
Piiroinen, S. T., Ketola, A., Lyytinen, A. and Lindström, L. (2011). Energy use, diapause behaviour and northern range expansion potential in the invasive Colorado potato beetle. Functional Ecology 25, 527536. doi: 10.1111/j.1365-2435.2010.01804.x.CrossRefGoogle Scholar
Plaistow, S., St. Clair, J., Grant, J. and Benton, T. (2007). How to put all your eggs in one basket: empirical patterns of offspring provisioning throughout a mother's lifetime. American Naturalist 170, 520529.CrossRefGoogle ScholarPubMed
Popov, A. V. [Попов, А.В.] (1965). The life cycle of louse-flies Lipoptena cervi L. and Stenepteryx hirundinis L. (Diptera, Hippoboscidae). Revue d'Entomologie de l'URSS XLIV, 573583. [in Russian].Google Scholar
Räisänen, M., Repo, T. and Lehto, T. (2006). Effect of thawing time, cooling rate and boron nutrition on freezing point of the primordial shoot in Norway spruce buds. Annals of Botany 97, 593599.CrossRefGoogle ScholarPubMed
Roff, D. A. (1992). The Evolution of Life Histories: Theory and Analysis. Chapman and Hall, New York, USA.Google Scholar
Salt, R. W. (1961). Principles of insect cold hardiness. Annual Review of Entomology 6, 5574.CrossRefGoogle Scholar
Samuel, W. M., Mooring, M. S. and Aalangdong, O. I. (2000). Adaptations of winter ticks to invade moose and moose to evade ticks. Alces 36, 183195.Google Scholar
Schultz, D. L. (1991). Parental investment in temporally varying environments. Evolutionary Ecology 5, 415427. doi: 10.1007/BF02214158.CrossRefGoogle Scholar
Smith, C. C. and Fretwell, S. D. (1974). The optimal balance between size and number of offspring. American Naturalist 108, 499506.CrossRefGoogle Scholar
Sømme, L. (1996). The effect of prolonged exposures at low temperatures in insects. Cryo Letters 17, 341346.Google Scholar
Tauber, M. J., Tauber, C. A. and Masaki, S. (1986). Seasonal Adaptations of Insects. Oxford University Press, New York, USA.Google Scholar
Tinsley, C. R. (1999). Overview: extreme temperatures. Parasitology 119 (Suppl.), S1S6.CrossRefGoogle Scholar
Wharton, D. A. (1999). Parasites and low temperatures. Parasitology 119 (Suppl.), S7–S17.CrossRefGoogle ScholarPubMed
Wilson, P. W., Heneghan, A. F. and Haymet, A. D. J. (2003). Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology, 46, 8898.CrossRefGoogle ScholarPubMed
Välimäki, P., Kaitala, A., Madslien, K., Härkönen, L., Várkonyi, G., Heikkilä, J., Jaakola, M., Ylönen, H., Kortet, R. and Ytrehus, B. (2011). Geographical variation in host use of a blood-feeding ectoparasitic fly: implications for population invasiveness. Oecologia 166, 985995. doi: 10.1007/s00442-011-1951-y.CrossRefGoogle ScholarPubMed
Verfoef, H. A., Nedved, O. and Lavy, D. (1997). Effects of starvation on body composition and cold tolerance in the collembolan Orchesella cincta and the isopod Porcellio scaber. Journal of Insect Physiology 43, 973978.Google Scholar