Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-19T03:27:25.991Z Has data issue: false hasContentIssue false

Genetic characterization of Toxoplasma gondii strains by random amplified polymorphic DNA polymerase chain reaction

Published online by Cambridge University Press:  06 April 2009

Z. G. Guo
Affiliation:
Molecular Parasitology Unit, Department of Cell and Molecular Biology, Faculty of Science, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
A. M. Johnson
Affiliation:
Molecular Parasitology Unit, Department of Cell and Molecular Biology, Faculty of Science, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia

Summary

The technique of Random Amplified Polymorphic DNA (RAPD) PCR has been used to detect DNA polymorphisms among Toxoplasma gondii strains. Seven arbitrary oligonucleotides (10-mer) were used as primers to amplify total genomic DNAs and significant genetic heterogeneity was detected among 11 T gondii strains with different virulence for mice. The polymorphisms observed allowed relationship dendrograms of T. gondii strains to be constructed by PHYLIP and PAUP analyses. The genetic relationships of the T. gondii strains generated by 2 analyses using completely different assumptions were similar. Both analyses revealed 2 groups of T. gondii strains, one formed by the 6 virulent strains and the other formed by the 5 avirulent strains. This suggests that the genus Toxoplasma may actually contain 2 groups, correlated with their virulence, which have probably evolved independently following their initial separation. Significant polymorphisms were also detected between 2 different laboratory stocks of the T. gondii RH strain.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barral, V., This, P., Imbert-Establet, D., Combes, C. & Delseny, M. (1993). Genetic variability and evolution of the Schistosoma genome analysed by using random amplified polymorphic DNA markers. Molecular and Biochemical Parasitology 59, 211–22.CrossRefGoogle ScholarPubMed
Bohne, W., Gross, U. & Heesemann, J. (1993). Differentiation between mouse-virulent and avirulent strains of Toxoplasma gondii by a monoclonal antibody recognizing a 27-Kilodalton antigen. Journal of Clinical Microbiology 31, 1641–3.CrossRefGoogle ScholarPubMed
Boothroyd, J. C., Leblanc, A. J. & Sibley, L. D. (1994). Allelic polymorphism in Toxoplasma gondii: implications for inter-strain mating. In Toxoplasmosis Recent Advances (ed. Smith, J. E.), pp. 38. Berlin: Springer-Verlag.Google Scholar
Clark, A. G. & Lanigan, C. M. S. (1993). Prospects for estimating nucleotide divergence with RAPDs. Molecular Biology and Evolution 10, 1096–111.Google ScholarPubMed
Cristina, N., Oury, B., Ambroise-Thomas, P. & Santoro, F. (1991). Restriction fragment length polymorphisms among Toxoplasma gondii strains. Parasitology Research 77, 266–8.CrossRefGoogle ScholarPubMed
Darde, M. L., Bouteille, B. & Pestre-Alexandre, M. (1992). Isoenzyme analysis of 35 Toxoplasma gondii isolates and the biological and epidemiological implication. Journal of Parasitology 78, 786–94.CrossRefGoogle Scholar
Felsenstein, J. (1985). Confidence limits on phytogenies: an approach using the bootstrap. Evolution 39, 783–91.CrossRefGoogle Scholar
Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package) version 3.5 c. Distributed by the author. Department of Genetics, University of Washington, Seattle.Google Scholar
Howe, D. K. & Sibley, L. D. (1994). Toxoplasma gondii: analysis of different laboratory stocks of the RH strain reveals genetic heterogeneity. Experimental Parasitology 78, 242–5.CrossRefGoogle ScholarPubMed
Johnson, A. M., Dubey, J. P. & Dame, J. B. (1986). Purification and characterization of Toxoplasma gondii tachyzoite DNA. Australian Journal of Experimental Biology and Medical Science 64, 351–5.CrossRefGoogle ScholarPubMed
Kasper, L. H. & Ware, P. L. (1985). Recognition and characterization of stage-specific oocyst/sporozoite antigens of Toxoplasma gondii by human antisera. Journal of Clinical Investigation 75, 1570–7.CrossRefGoogle ScholarPubMed
McLeod, R., Estes, G. R., Mack, D. G. & Cohen, H. (1984). Immune response of mice to ingested Toxoplasma gondii: a model of Toxoplasma infection acquired by ingestion. Journal of Infectious Diseases 149, 234–44.CrossRefGoogle Scholar
Nei, M. & Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Genetics 76, 5269–73.Google ScholarPubMed
Parmley, S. F., Gross, U., Sucharczuk, A., Windeck, T., Sgarlato, G. D. & Remington, J. S. (1994). Two alleles of the gene encoding surface antigen p22 in 25 strains of Toxoplasma gondii. Journal of Parasitology 80, 293301.CrossRefGoogle ScholarPubMed
Sibley, L. D. & Boothroyd, J. C. (1992). Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature, London 359, 82–5.CrossRefGoogle ScholarPubMed
Sibley, L. D., Leblanc, A. J., Pfefferkorn, E. R. & Boothroyd, J. C. (1992). Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii. Genetics 132, 1003–11.CrossRefGoogle ScholarPubMed
Tibayrenc, M. (1993). Entamoeba, Giardia and Toxoplasma: clone or cryptic species? Parasitology Today 9, 102–5.CrossRefGoogle ScholarPubMed
Ware, P. L. & Kasper, L. H. (1987). Strain-specific antigens of Toxoplasma gondii. Infection and Immunity 55, 778–83.CrossRefGoogle ScholarPubMed
Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 7213–18.CrossRefGoogle ScholarPubMed
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–5.CrossRefGoogle ScholarPubMed