Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-27T16:10:14.333Z Has data issue: false hasContentIssue false

Expressed sequence tag analysis of Sarcoptes scabiei

Published online by Cambridge University Press:  09 October 2003

E. L. LJUNGGREN
Affiliation:
Department of Parasitology (SWEPAR), National Veterinary Institute and Swedish University of Agricultural Sciences, SE-751 89 Uppsala, Sweden
D. NILSSON
Affiliation:
Center for Genomics and Bioinformatics, Karolinska Institute, Berzeliusv 35, SE-17177 Stockholm, Sweden
J. G. MATTSSON
Affiliation:
Department of Parasitology (SWEPAR), National Veterinary Institute and Swedish University of Agricultural Sciences, SE-751 89 Uppsala, Sweden

Abstract

Sarcoptes scabiei is an important parasitic mite in both man and animals. Little is known about the molecular interactions between this pathogen and its host. This is in part explained by the paucity of mite-derived material, including antigens. To extend the knowledge of the molecular repertoire in S. scabiei, we have performed a gene survey by an expressed sequence tag (EST) analysis. A total of 1020 ESTs were generated from an S. scabiei cDNA library. The average sequence read was 510 bp after editing and the overall sequencing success was 89%. Clustering of the sequences resulted in 76 clusters, comprising 36% of the ESTs. Sequence similarity searches showed that almost half of the S. scabiei ESTs could be assigned a putative identity. Many of these transcripts shared similarity with genes involved in basic metabolism and cellular organization. In the data set we also identified several proteases and other types of potential allergens implicated in various disease mechanisms. A relatively large fraction of the ESTs coded for different proteins carrying protease inhibitor-like domains. The clones with no similarity to previously identified genes constituted 11% of our transcripts. The EST data generated in this study will be a valuable resource in further studies of the biology of S. scabiei and in the identification of genes that can serve as potential targets in the control of the parasite.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AKI, T., KODAMA, T., FUJIKAWA, A., MIURA, K., SHIGETA, S., WADA, T., JYO, T., MUROOKA, Y., OKA, S. & ONO, K. (1995). Immunochemical characterization of recombinant and native tropomyosins as a new allergen from the house dust mite, Dermatophagoides farinae. Journal of Allergy and Clinical Immunology 96, 7483.CrossRefGoogle Scholar
ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. & LIPMAN, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle Scholar
ARENDS, J. J. & RITZHAUPT, L. K. (1995). Mange in Swine – a Technical Update. Veterinary Learning Systems, New York.
BORNSTEIN, S. & ZAKRISSON, G. (1993). Humoral antibody response to experimental Sarcoptes scabiei var. vulpes infection in the dog. Veterinary Dermatology 4, 107110.CrossRefGoogle Scholar
BURGESS, I. (1994). Sarcoptes scabiei and scabies. Advances in Parasitology 33, 235292.CrossRefGoogle Scholar
CABRERA, R., AGAR, A. & DAHL, M. V. (1993). The immunology of scabies. Seminars in Dermatology 12, 1521.Google Scholar
CHOUELA, E., ABELDANO, A., PELLERANO, G. & HERNANDEZ, M. I. (2002). Diagnosis and treatment of scabies: a practical guide. American Journal of Clinical Dermatology 3, 918.CrossRefGoogle Scholar
CONKLIN, D., YEE, D. P., MILLAR, R., ENGELBRECHT, J. & VISSING, H. (2000). Mining of assembled expressed sequence tag (EST) data for protein families: application to the G protein-coupled receptor superfamily. Briefings in Bioinformatics 1, 9399.CrossRefGoogle Scholar
DAUB, J., LOUKAS, A., PRITCHARD, D. I. & BLAXTER, M. (2000). A survey of genes expressed in adults of the human hookworm, Necator americanus. Parasitology 120, 171184.CrossRefGoogle Scholar
DAVIES, P. R. (1995). Sarcoptic mange and production performance of swine: a review of the literature and studies of associations between mite infestation, growth rate and measures of mange severity in growing pigs. Veterinary Parasitology 60, 249264.CrossRefGoogle Scholar
DONABEDIAN, H. & KHAZAN, U. (1992). Norwegian scabies in a patient with AIDS. Clinical Infectious Diseases 14, 162164.CrossRefGoogle Scholar
ERIKSSON, T. L., RASOOL, O., HUECAS, S., WHITLEY, P., CRAMERI, R., APPENZELLER, U., GAFVELIN, G. & VAN HAGE-HAMSTEN, M. (2001). Cloning of three new allergens from the dust mite Lepidoglyphus destructor using phage surface display technology. European Journal of Biochemistry/FEBS 268, 287294.CrossRefGoogle Scholar
EWING, B. & GREEN, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research 8, 186194.Google Scholar
EWING, B., HILLIER, L., WENDL, M. C. & GREEN, P. (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research 8, 175185.Google Scholar
FIELDS, C. (1994). Analysis of gene expression by tissue and developmental stage. Current Opinion in Biotechnology 5, 595598.CrossRefGoogle Scholar
FLYBASE (1999). The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Research 27, 8588.Google Scholar
GISH, W. & STATES, D. J. (1993). Identification of protein coding regions by database similarity search. Nature, Genetics 3, 266272.CrossRefGoogle Scholar
HOLT, R. A., SUBRAMANIAN, G. M., HALPERN, A., SUTTON, G. G., CHARLAB, R., NUSSKERN, D. R., WINCKER, P., CLARK, A. G., RIBEIRO, J. M., WIDES, R., SALZBERG, S. L., LOFTUS, B., YANDELL, M., MAJOROS, W. H., RUSCH, D. B., LAI, Z., KRAFT, C. L., ABRIL, J. F., ANTHOUARD, V., ARENSBURGER, P., ATKINSON, P. W., BADEN, H., DE BERARDINIS, V., BALDWIN, D., BENES, V., BIEDLER, J., BLASS, C., BOLANOS, R., BOSCUS, D., BARNSTEAD, M., CAI, S., CENTER, A., CHATUVERDI, K., CHRISTOPHIDES, G. K., CHRYSTAL, M. A., CLAMP, M., CRAVCHIK, A., CURWEN, V., DANA, A., DELCHER, A., DEW, I., EVANS, C. A., FLANIGAN, M., GRUNDSCHOBER-FREIMOSER, A., FRIEDLI, L., GU, Z., GUAN, P., GUIGO, R., HILLENMEYER, M. E., HLADUN, S. L., HOGAN, J. R., HONG, Y. S., HOOVER, J., JAILLON, O., KE, Z., KODIRA, C., KOKOZA, E., KOUTSOS, A., LETUNIC, I., LEVITSKY, A., LIANG, Y., LIN, J. J., LOBO, N. F., LOPEZ, J. R., MALEK, J. A., MCINTOSH, T. C., MEISTER, S., MILLER, J., MOBARRY, C., MONGIN, E., MURPHY, S. D., O'BROCHTA, D. A., PFANNKOCH, C., QI, R., REGIER, M. A., REMINGTON, K., SHAO, H., SHARAKHOVA, M. V., SITTER, C. D., SHETTY, J., SMITH, T. J., STRONG, R., SUN, J., THOMASOVA, D., TON, L. Q., TOPALIS, P., TU, Z., UNGER, M. F., WALENZ, B., WANG, A., WANG, J., WANG, M., WANG, X., WOODFORD, K. J., WORTMAN, J. R., WU, M., YAO, A., ZDOBNOV, E. M., ZHANG, H., ZHAO, Q. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129149.CrossRefGoogle Scholar
KANEHISA, M., GOTO, S., KAWASHIMA, S. & NAKAYA, A. (2002). The KEGG databases at GenomeNet. Nucleic Acids Research 30, 4246.CrossRefGoogle Scholar
KEMP, D. J., WALTON, S. F., HARUMAL, P. & CURRIE, B. J. (2002). The scourge of scabies. Biologist 49, 1924.Google Scholar
KENT, N. A., HILL, M. R., KEEN, J. N., HOLLAND, P. W. & HART, B. J. (1992). Molecular characterisation of group I allergen Eur m I from house dust mite Euroglyphus maynei. International Archives of Allergy and Immunology 99, 150152.CrossRefGoogle Scholar
KENYON, F. & KNOX, D. (2002). The proteinases of Psoroptes ovis, the sheep scab mite – their diversity and substrate specificity. Veterinary Parasitology 105, 317325.CrossRefGoogle Scholar
MATTSSON, J. G., LJUNGGREN, E. L. & BERGSTRÖM, K. (2001). Paramyosin from the parasitic mite Sarcoptes scabiei: cDNA cloning and heterologous expression. Parasitology 122, 555562.CrossRefGoogle Scholar
MATTSSON, J. G. & SOLDATI, D. (1999). MPS1: a small, evolutionarily conserved zinc finger protein from the protozoan Toxoplasma gondii. FEMS Microbiology Letters 180, 235239.CrossRefGoogle Scholar
NISBET, A. J. & BILLINGSLEY, P. F. (1999). Hydrolytic enzymes of Psoroptes cuniculi (Delafond). Insect Biochemistry and Molecular Biology 29, 2532.CrossRefGoogle Scholar
NISBET, A. J. & BILLINGSLEY, P. F. (2000). A comparative survey of the hydrolytic enzymes of ectoparasitic and free-living mites. International Journal for Parasitology 30, 1927.CrossRefGoogle Scholar
PORCEL, B. M., TRAN, A. N., TAMMI, M., NYARADY, Z., RYDAKER, M., URMENYI, T. P., RONDINELLI, E., PETTERSSON, U., ANDERSSON, B. & ÅSLUND, L. (2000). Gene survey of the pathogenic protozoan Trypanosoma cruzi. Genome Research 10, 11031107.CrossRefGoogle Scholar
RENARD, G., GARCIA, J. F., CARDOSO, F. C., RICHTER, M. F., SAKANARI, J. A., OZAKI, L. S., TERMIGNONI, C. & MASUDA, A. (2000). Cloning and functional expression of a Boophilus microplus cathepsin L-like enzyme. Insect Biochemistry and Molecular Biology 30, 10171026.CrossRefGoogle Scholar
RENARD, G., LARA, F. A., DE CARDOSO, F. C., MIGUENS, F. C., DANSA-PETRETSKI, M., TERMIGNONI, C. & MASUDA, A. (2002). Expression and immunolocalization of a Boophilus microplus cathepsin L-like enzyme. Insect Molecular Biology 11, 325328.CrossRefGoogle Scholar
SAJID, M. & McKERROW, J. H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 121.CrossRefGoogle Scholar
SCHLESINGER, I., OELRICH, D. M. & TYRING, S. K. (1994). Crusted (Norwegian) scabies in patients with AIDS: the range of clinical presentations. Southern Medical Journal 87, 352356.CrossRefGoogle Scholar
SHAKIB, F. & GOUGH, L. (2000). The proteolytic activity of Der p 1 selectively enhances IgE synthesis: a link between allergenicity and cysteine protease activity. Clinical and Experimental Allergy 30, 751752.CrossRefGoogle Scholar
SHAKIB, F., SCHULZ, O. & SEWELL, H. (1998). A mite subversive: cleavage of CD23 and CD25 by Der p 1 enhances allergenicity. Immunology Today 19, 313316.CrossRefGoogle Scholar
THOMAS, W. R. & SMITH, W. (1998). House-dust-mite allergens. Allergy 53, 821832.CrossRefGoogle Scholar
WALKER, G. J. & JOHNSTONE, P. W. (2000). Interventions for treating scabies. Cochrane Database of Systematic Reviews 3, CD000320.CrossRefGoogle Scholar
WALTON, S. F., CHOY, J. L., BONSON, A., VALLE, A., McBROOM, J., TAPLIN, D., ARLIAN, L., MATHEWS, J. D., CURRIE, B. & KEMP, D. J. (1999 a). Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabies-endemic communities in northern Australia. The American Journal of Tropical Medicine and Hygiene 61, 542547.Google Scholar
WALTON, S. F., McBROOM, J., MATHEWS, J. D., KEMP, D. J. & CURRIE, B. J. (1999 b). Crusted scabies: A molecular analysis of Sarcoptes scabiei variety hominis populations from patients with repeated infestations. Clinical Infectious Diseases 29, 12261230.Google Scholar
WOLFNER, M. F., HARADA, H. A., BERTRAM, M. J., STELICK, T. J., KRAUS, K. W., KALB, J. M., LUNG, Y. O., NEUBAUM, D. M., PARK, M. & TRAM, U. (1997). New genes for male accessory gland proteins in Drosophila melanogaster. Insect Biochemistry and Molecular Biology 27, 825834.CrossRefGoogle Scholar
YASUHARA, T., TAKAI, T., YUUKI, T., OKUDAIRA, H. & OKUMURA, Y. (2001). Biologically active recombinant forms of a major house dust mite group 1 allergen Der f 1 with full activities of both cysteine protease and IgE binding. Clinical and Experimental Allergy 31, 116124.CrossRefGoogle Scholar