Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T04:57:22.642Z Has data issue: false hasContentIssue false

Distribution and biophysical properties of fluorescent lipids on the surface of adult Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

C. A. Redman*
Affiliation:
Davidson Building, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ
J. R. Kusel
Affiliation:
Davidson Building, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ
*
*Corresponding author: Tel: 0141 330 6449. Fax: 0141 330 4620. E-mail: gbca-66@udcf.gla.ac.uk (John Kusel)

Summary

The properties of 4 fluorescent lipid compounds in the surface membrane of adult male Schistosoma mansoni worms were examined by fluorescent microscopy and fluorescent recovery after photobleaching (FRAP). The data suggest that the probes N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl) sphingosine (BODIPY FL ceramide) and PKH2 pass through the outer membrane and enter structures in or below the membrane. In contrast 5-(N-octadecanoyl)aminofluorescein (AF18) and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl) sphingosylphosphocholine (BODIPY FL sphingomyelin) insert into the outer monolayer. The DL values of these latter 2 compounds, 8·83 ± 2·35 × 10−9 cm2 s−1 and 2·76 ± 0·53 × 10−9cm2 s−1, respectively, suggest that they enter different domains. Furthermore, it was observed that both BODIPY FL ceramide and BODIPY FL sphingomyelin entered particular structures in or under the surface membrane. The possible nature of these particles is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, D. A. & Rose, J. K. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533544.CrossRefGoogle Scholar
Camacho, M., Alsford, S., Jones, A. & Agnew, A. (1995). Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma mansoni. Molecular and Biochemical Parasitology 71, 127134.CrossRefGoogle Scholar
Caulfield, J. P., Chiang, C.-P., Yacono, P. W., Smith, L. A. & Golan, D. E. (1991). Low density lipoproteins bound to Schistosoma mansoni do not alter the lateral diffusion or shedding of lipids in the outer surface membrane. Journal of Cell Science 99, 167173.CrossRefGoogle ScholarPubMed
Chiang, C.-P. & Caulfield, J. P. (1989). The binding of low-density lipoproteins to the surface of Schistosoma mansoni is inhibited by polyanions and reduces the binding of anti-schistosomal antibodies. American Journal of Parasitology 134, 10071018.Google Scholar
Cox, F. E. G. (1979). Death of a schistosome. Nature, London 278, 401402.CrossRefGoogle ScholarPubMed
Ferguson, M. A. J. (1994). What can GPI do for you? Parasitology Today 10, 4852.CrossRefGoogle ScholarPubMed
Fallon, P. G., Cooper, R. O., Probert, A. J. & Doenhoff, M. J. (1992). Immune-dependent chemotherapy of schistosomiasis. Parasitology 105, S41–S48.CrossRefGoogle ScholarPubMed
Foley, M., MacGregor, A. N., Kusel, J. R., Garland, P. B., Downie, T. & Moore, I. (1986). The lateral diffusion of lipid probes in the surface membrane of Schistosoma mansoni. Journal of Cell Biology 103, 807818.CrossRefGoogle ScholarPubMed
Hackstadt, T., Scidmore, M. A. & Rockey, D. D. (1995). Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proceedings of the National Academy of Sciences, USA 92, 48774881.CrossRefGoogle Scholar
Hawn, T. R. & Strand, M. (1993). Detection and partial characterization of glycosylphosphatidylinositol-phospholipase from Fasciola hepatica and Schistosoma mansoni. Molecular and Biochemical Parasitology 59, 7382.CrossRefGoogle Scholar
Kusel, J. R. & Gordon, J. F. (1989). Biophysical properties of the schistosome surface and their relevance to its properties under immune and drug attack. Parasite Immunology 11, 431451.CrossRefGoogle ScholarPubMed
Levy, M. G. & Read, C. P. (1975). Purine and pyrimidine transport in Schistosoma mansoni. Journal of Parasitology 61, 257266.Google ScholarPubMed
Lima, S., Vieira, L. Q., Harder, A. & Kusel, J. R. (1994 a). Altered behaviour of carbohydrate-bound molecules and lipids in areas of the tegument of adult Schistosoma mansoni worms damaged by praziquantel. Parasitology 109, 469477.CrossRefGoogle ScholarPubMed
Lima, S., Vieira, L. Q., Harder, A. & Kusel, J. R. (1994 b). Effects of culture and praziquantel on membrane fluidity parameters of adult Schistosoma mansoni. Parasitology 109, 5765.CrossRefGoogle ScholarPubMed
Lipsky, N. G. & Pagano, R. E. (1985). A vital stain for the Golgi-apparatus. Science 228, 745747.CrossRefGoogle ScholarPubMed
MacGregor, A. N., Stott, D. I. & Kusel, J. R. (1985). Lectin binding of glycoproteins in the surface membrane of Schistosoma mansoni. Molecular and Biochemical Parasitology 16, 163172.CrossRefGoogle ScholarPubMed
McLaren, D., Hockley, D. J., Coloring, O. L. & Hammond, B. J. (1978). A freeze fracture study of the developing tegumental outer membrane of Schistosoma mansoni. Parasitology 76, 327348.CrossRefGoogle ScholarPubMed
McLaren, D. (1980). The adult worm. In Schistosoma mansoni: The Parasite Surface in Relation to Host Immunity (ed. Brown, K. N.), pp. 127. Research Studies Press.Google Scholar
Moffat, D. & Kusel, J. R. (1992). Fluorescent lipid uptake and transport in adult Schistosoma mansoni. Parasitology 105, 8189.CrossRefGoogle ScholarPubMed
Pagano, R. E., Martin, O. C., Kang, H. C. & Haugland, R. P. (1991). TI: A novel fluorescent ceramide analog fo studying membrane traffic in animal cells: accumulation at the golgi-apparatus results in altered spectral properties of the sphingolipid precursor. Journal of Cell Biology 113, 12671279.CrossRefGoogle Scholar
Redman, C. A., Robertson, A., Fallon, P. G., Modha, J., Kusel, J. R., Doenhoff, M. J. & Martin, R. J. (1966).Praziquantel: an urgent and exciting challenge. Parasitology Today 12, 1420.CrossRefGoogle Scholar
Rumjanek, F. D. (1987). Biochemistry and Physiology. In Biochemistry and Physiology in the Biology of Schistosomes, from Genes to Latrines (ed. Rollinson, D. & Simpson, A. J.), pp. 163183a. Academic Press, London.Google Scholar
Rumjanek, F. D., Campos, E. G. & Alonso, L. C. C. (1988). Evidence for the occurrence of LDL receptors in the extracts of schistosomula of Schistosoma mansoni. Molecular and Biochemical Parasitology 28, 145152.CrossRefGoogle ScholarPubMed
Rumjanek, F. D., McLaren, D. J. & Smithers, S. R. (1983). Serum-induced expression of a surface protein in schistosomula of Schistosoma mansoni: a possible receptor for lipid uptake. Molecular and Biochemical Parasitology 9, 337350.CrossRefGoogle ScholarPubMed
Simpson, A. J. G. & Smithers, s. R. (1980). Characterization of the exposed carbohydrates on the surface membrane of adult Schistosoma mansoni by analysis of lectin binding. Parasitology 81, 115.CrossRefGoogle ScholarPubMed
Takizawa, P. A., Yucel, J. K., Veit, B., Faulkner, D. J., Deerinck, T., Soto, G., Ellisman, M. & Malhortra, X. (1993). Complete vesiculation of Golgi membranes and inhibition of protein-transport by a novel sea sponge metabolite, ilimaquinone. Cell 73, 10791090.CrossRefGoogle ScholarPubMed
Meer, G. Van (1993). Transport and sorting of membrane lipids. Current Opinion in Cell Biology 5, 661673.CrossRefGoogle ScholarPubMed