Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T05:49:09.390Z Has data issue: false hasContentIssue false

Distinction of African trypanosome species using nucleic acid hybridization

Published online by Cambridge University Press:  06 April 2009

N. N. Massamba
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
R. O. Williams
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya

Summary

We have performed restriction endonuclease digestion of nuclear DNAs, combined with gel electrophoresis and molecular hybridization to characterize different Trypanosoma brucei brucei stocks and to identify trypanosome species. Cloned DNA complementary to the messenger RNAs (mRNAs) for different variable surface glycoproteins (VSGs) of T. b. brucei stock LUMP 227 was used to examine differences in genomic DNAs from T. b. brucei stocks and from various other trypanosome species. These cDNA reagents differentiated the stocks of T. b. brucei and also distinguished the trypanosome species. Our data also show that a T. b. brucei nuclear DNA fragment used as a probe in molecular hybridization analysis provides an appropriate marker in determining trypanosome species. We have extended our analysis of trypanosome nuclear DNA by developing a simple and rapid spot test, for the identification of trypanosome species, which can be carried out using crude materials such as isolated parasites, infected whole blood and tsetse saliva. The procedure is species-specific, sensitive to the level of 104 organisms and is suitable for use under field conditions. Thus, with appropriate sequences for hybridization, the procedure has obvious applications for the diagnosis of African trypanosomiasis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbet, A. F. & McGuire, T. C. (1978). Cross-reacting determinants in variant-specific surface antigens of African trypanosomes. Proceedings of the National Academy of Sciences 75, 1989–93.CrossRefGoogle Scholar
Benton, W. D. & Davis, R. W. (1977). Screening λgt recombinant clones by hybridisation to single plaques in situ. Science 196, 180–2.CrossRefGoogle ScholarPubMed
Black, S. J., Hewett, R. S. & Sendashonga, C. N. (1982). Trypanosoma brucei variable surface antigen is released by degenerating parasites but not by actively dividing parasites. Parasite Immunology 4, 233–44.CrossRefGoogle Scholar
Borst, P., Fase-Fowler, F. & Gibson, W. C. (1981). Quantitation of genetic differences between Trypanosoma brucei gambiense, rhodesiense and brucei by restriction enzyme analysis of kinetoplast DNA. Molecular and Biochemical Parasitology 3, 117–31.CrossRefGoogle ScholarPubMed
Borst, P., Fase-Fowler, F., Frasch, A. C. C., Hoeijmakers, J. H. J. & Weijers, P. J. (1980 a). Characterization of DNA from Trypanosoma brucei and related trypanosomes by restriction endonuclease digestion. Molecular and Biochemical Parasitology 1, 221–46.CrossRefGoogle Scholar
Borst, P., Fase-Fowler, F., Hoeijmakers, J. H. J. & Frasch, A. C. C. (1980 b). Variation in maxi-circle and mini-circle sequences in kinetoplast DNAs from different Trypanosome brucei strains. Biochimica et biophysica acta 610, 197210.CrossRefGoogle ScholarPubMed
Cunningham, M. R. & Vickerman, K. (1962). Antigenic analysis in Trypanosoma brucei group, using the agglutination reaction. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 4859.CrossRefGoogle Scholar
Frasch, A. C. C., Borst, P. & Van den Burg, J. (1982). Rapid evolution of genes coding for variant surface glycoproteins in trypansomes. Gene 17, 197211.CrossRefGoogle Scholar
Gibson, W. C., Marshall, T. F. & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism: New approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 171247.Google Scholar
Godfrey, D. G. & Kilgour, V. (1976). Enzyme electrophoresis in characterizing the causative organism of Gambian trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 70, 219–24.CrossRefGoogle ScholarPubMed
Grab, D. J. & Bwayo, J. J. (1982). Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta tropica 39, 363–6.Google ScholarPubMed
Grunstein, M. & Hogness, D. (1975). Colony hybridisation: A method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences 72, 3961–5.CrossRefGoogle ScholarPubMed
Jones, T. W., Cunningham, I., Taylor, A. M. & Gray, A. R. (1981). The use of the culture-derived metacyclic trypanosomes in studies on the serological relationships of stocks of Trypanosoma brucei gambiense. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 560–5.CrossRefGoogle ScholarPubMed
Laurent, M., Van Assel, S. & Steinert, M. (1971). Kinetoplast DNA. A unique macromolecular structure of considerable size and mechanical resistance. Biochemical and Biophysical Research Communications 43, 278–84.CrossRefGoogle ScholarPubMed
Leeflang, P., Buys, J. & Blotkamp, G. (1976). Studies of Trypanosoma vivax infectivity and serial maintenance of natural bovine isolates in mice. International Journal for Parasitology 6, 413–17.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Young, J. R., Englund, P. T., Shapiro, S. Z. & Williams, R. O. (1982). Two distinct forms of surface antigen gene rearrangement in Trypanosoma brucei. Nature, London 297, 514–16.CrossRefGoogle ScholarPubMed
Maniatis, T., Hardison, R. C., Lacy, E., Lauer, J., O'Connell, C. & Quon, D. (1978). The isolation of structural genes from libraries of eucaryotic DNA. Cell 15, 687701.CrossRefGoogle ScholarPubMed
Nantulya, V. M., Musoke, A. J., Rurangirwa, F. R., Barbet, A. F., Ngaira, J. M. & Katende, J. M. (1982). Immune depression in African trypanosomiasis: the role of antigenic competition. Clinical and Experimental Immunology 47, 234–42.Google ScholarPubMed
Pays, E., Dereck, P., Van Assel, S., Babiker, E. A., Leray, D., Van Meirvenne, N. & Steinert, M. (1983). Comparative analysis of a Trypanosoma brucei gambiense antigen gene family and its potential use in epidemiology of sleeping sickness. Molecular and Biochemical Parasitology 7, 6374.CrossRefGoogle ScholarPubMed
Pays, E., Lheureux, M., Vervoort, T. & Steinert, M. (1981). Conservation of variant specific surface antigen gene in different trypanosome species and sub-species. Molecular and Biochemical Parasitology 4, 349–57.CrossRefGoogle ScholarPubMed
Rigby, P. W. J., Dickmann, M., Rhodes, C. & Berg, P. J. (1977). Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with polymerase. I. Journal of Molecular Biology, 113, 237–51.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Steinert, M., Van Assel, S., Borst, P., Mol, J. N. M., Kleisen, C. M. & Newton, B. A. (1973). Specific detection of kinetoplast DNA in cytological preparations of trypanosomes by hybridization with complementary RNA. Experimental Cell Research 76, 175–85.CrossRefGoogle ScholarPubMed
Steinert, M., Van Assel, S., Borst, P. & Newton, B. A. (1976). Evolution of kinetoplast DNA. In The Genetic Function of Mitochondrial DNA (ed. Saccone, C. and Kroon, A. M.), pp. 7181. Amsterdam: North-Holland.Google Scholar
Van Meirvenne, N., Magnus, E. & Janssens, P. G. (1976). The effect of normal human serum on trypanosomes of distinct antigen type (Etat 1 to 12) isolated from a strain of Trypanosoma brucei rhodesiense. Annales de la Société Belge de Médicine Tropicale 56, 5563.Google ScholarPubMed
Vervoort, T., Barbet, A. F., Musoke, A. J., Magnus, E., Mpimbaza, G. & Van Meirvenne, N. (1981). Isotypic surface glycoprotein of trypanosomes. Immunology 44, 223–32.Google Scholar
Wahl, G. M., Stern, M. & Stark, G. R. (1979). Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl paper and rapid hybridization using dextran sulphate. Proceedings of the National Academy of Sciences 76, 3683–7.CrossRefGoogle Scholar
Williams, R. O., Young, J. R. & Majiwa, P. A. O. (1979). Genomic rearrangements correlated with antigenic variation in Trypanosoma brucei. Nature, London 282, 847–9.CrossRefGoogle ScholarPubMed
Williams, R. O., Young, J. R., Majiwa, P. A. O., Doyle, J. J. & Shapiro, S. Z. (1980). Analyses of variable antigen gene rearrangements in Trypanosoma brucei. The American Journal of Tropical Medicine and Hygiene 29, (5) Suppl. 1037–42.CrossRefGoogle ScholarPubMed
Wirth, D. F. & Pratt, D. M. (1982). Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proceedings of the National Academy of Sciences 79, 69997006.CrossRefGoogle ScholarPubMed
Young, J. R., Donelson, J. E., Majiwa, P. A. O., Shapiro, S. Z. & Williams, R. O. (1982). Analysis of genomic rearrangements associated with two variable antigen genes of Trypanosoma brucei. Nucleic Acids Research 10, 803–19.CrossRefGoogle ScholarPubMed