Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T01:05:05.463Z Has data issue: false hasContentIssue false

Antibodies to synthetic peptides based on band 3 motifs react specifically with Plasmodium falciparum (humanmalaria)-infected erythrocytes and block cytoadherence

Published online by Cambridge University Press:  06 April 2009

I. Crandall
Affiliation:
University of California Riverside, Riverside, California 92521, USA
I. W. Sherman
Affiliation:
University of California Riverside, Riverside, California 92521, USA

Summary

Rabbit polyclonal and mouse monoclonal antibodies (Mabs) prepared against synthetic peptides patterned on exofacialloops 3 (amino acids 546–555) and 7 (821–834) of the human anion transport protein band 3 inhibited the cytoadherence of Plasmodium falciparum-infected erythrocytes to C32 amelanotic melanoma cells. Mabs directed against exofacial loop4 (amino acids 628–642) did not inhibit adherence to a significant degree. The murine Mabs recognized only P. falciparum- infected erythrocytes suggesting that the epitopes of loops 3, 4 and 7 are normally cryptic in uninfected erythrocytes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M., Iseki, M., Barnwell, J. W., Taylor, D., Oo, M. M. & Howard, R. J. (1990). The pathology of human cerebral malaria. American Journal of Tropical Medicine and Hygiene 43, 30–7.Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein using the principal of protein dye binding. Analytical Biochemistry 72, 248–54.CrossRefGoogle Scholar
Cabantchik, Z. I. & Rothstein, A. (1974). Membrane proteins related to anion permeability of human redblood cells. Journal of Membrane Biology 15, 207–26.CrossRefGoogle Scholar
Crandall, L., Collins, W. E., Gysin, J. & Sherman, I. W. (1993). Synthetic peptides based on motifs present in human band 3 protein inhibit cytoadherence/sequestration of Plasmodium falciparum (human malaria). Proceedings of the National Academy ofSciences, USA 90, 4703–7.Google Scholar
Crandall, I. & Sherman, I. W. (1991). Plasmodium falciparum (human malaria)-induced modifications inhuman erythrocyte band 3 protein. Parasitology 102, 335–40.Google Scholar
Crandall, I. & Sherman, I. W. (1994). Cytoadhcrcnce-related neoantigens on Plasmodium falciparum (human malaria)-infected human erythrocytes result from the exposure of normally cryptic regions of the band 3 protein. Parasitology 108, 257–67.Google Scholar
Crandall, I., Smith, H. & Sherman, I. W. (1991). Plasmodium falciparum: the effect of pH and Ca2+ concentration on the in vitro cytoadherence of infected erythrocytes to amelanotic melananoma cells. Experimental Parasitology 73, 362–8.CrossRefGoogle ScholarPubMed
Harlow, E. & Lane, D. (1988). Antibodies: A LaboratoryManual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Howard, R. J. (1988). Malarial proteins at the membrane of Plasmodium falciparum-iniected erythrocytes and their involvement in cytoadherence to endothelial cells. Progress in Allergy 41, 98147.Google Scholar
Howard, R. J., Barnwell, J. W., Rock, E. P., Neequaye, J., Adjei, O., Maloy, W. L., Lyon, J. A. & Saul, A. (1988). Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes. Molecular and Biochemical Parasitology 27, 207–24.Google Scholar
Howard, R., Handunnetti, S., Hasler, T., Gilladoga, A., De Aguiar, J., Posloske, B., Morehead, D., Albrect, G. & Van Schravendijk, M. (1990). Surface molecules on Plasmodium falciparum-infected erythrocytes involved in adherence. American Journal of Tropical Medicine and Hygiene 43, 1529.CrossRefGoogle ScholarPubMed
Howe, E. & Lane, D. (1988). Monoclonal antibodies. In Antibodies: A Laboratory Manual, pp. 139244. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Jennings, M. L. & Passow, H. (1979). Anion transportacross the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4, 4′-diisothiocyano dihydrostilbene-2, 2′ disulfonate. Biochimica et Biophysica Acta 554, 498519.Google Scholar
Kay, M. M. B. (1984). Localization of senescent cell antigen on band 3. Proceedings of the National Academy of Sciences, USA 81, 5733–57.Google Scholar
Kay, M. M. B., Marchalonis, J. J., Hughes, J., Watanabe, K. & Schluter, S. F. (1990). Definition of a physiologic aging autoantigen by using synthetic peptides of membrane protein band 3: localization of the active antigenic sites. Proceedings of the National Academy of Sciences, USA 87, 5734–8.CrossRefGoogle ScholarPubMed
Kopito, R. R. & Lodish, H. F. (1985). Primary structure and transmembrane orientation of the murine anion exchange protein. Nature, London 316, 234–8.CrossRefGoogle ScholarPubMed
Lambros, C. & Vanderberg, J. P. (1980). Syncronization of Plasmodium falciparum erythrocytic stages inculture. Journal of Parasitology 65, 418–20.Google Scholar
Leech, J. H., Barnwell, J. W., Miller, L. H. & Howard, R. J. (1984). Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. Journal of Experimental Medicine 159, 1567–75.CrossRefGoogle ScholarPubMed
Low, P. S. (1986). Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochimicaet Biophysica Acta 864, 145–67.Google Scholar
Lux, S. E., John, K. M., Kopito, R. R. & Lodish, H. F. (1989). Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proceedings of the National Academy of Sciences, USA 86, 9089–93.CrossRefGoogle ScholarPubMed
Markowitz, S. & Marchesi, V. (1981). The carboxyl-terminal domain of human erythrocyte band 3. Journal of Biological Chemistry 256, 6463–8.Google Scholar
Pongponratn, E., Riganti, M., Punpoowong, B. & Aikawa, M. (1991). Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study. American Journal of Tropical Medicine and Hygiene 44, 168–75.Google Scholar
Raida, M., Wendel, J., Kojro, E., Fahrenholz, F., Fashold, H., Legrum, B. & Passow, H. (1989). Major proteolytic fragments of the murine band 3 protein asobtained after in situ proteolysis. Biochimica et Biophysica Acta 980, 291–8.Google Scholar
Tanner, M. J. A., Martin, P. G. & High, S. (1988). The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. The Biochemical Journal 256, 703–12.Google Scholar
Tam, J. P. (1988). Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proceedings of the National Academy of Sciences, USA 85, 5409–13.Google Scholar
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.Google Scholar
Udeinya, I., Schmidt, J. A., Aikawa, M., Miller, L. H. & Green, I. (1981). Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science 213, 555–7.CrossRefGoogle ScholarPubMed
Winograd, E. & Sherman, I. W. (1989). Characterizationof a modified red cell membrane protein expressed on erythrocytes infected with the human malaria parasite Plasmodium falciparum: possible role as a cytoadherent mediating protein. Journal of Cell Biology 108, 2330.Google Scholar
Zola, H. & Brooks, D. (1982). Techniques for the production and characterization of monoclonal hybridoma antibodies. In Monoclonal Hybridoma Antibodies: Techniques and Applications (ed. Hurrell, J. G. R.), pp. 157. Boca Raton, Florida: CRC Press Inc.Google Scholar