Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-25T00:11:05.888Z Has data issue: false hasContentIssue false

Vaccinia virus: an expression vector for genes from parasites

Published online by Cambridge University Press:  23 August 2011

G. L. Smith
Affiliation:
Laboratory of Viral Diseases, National Institute for Allergy and Infectious Diseases Bethesda, Maryland 20205, USA
K.-C. Cheng
Affiliation:
Laboratory of Viral Diseases, National Institute for Allergy and Infectious Diseases Bethesda, Maryland 20205, USA
B. Moss
Affiliation:
Laboratory of Viral Diseases, National Institute for Allergy and Infectious Diseases Bethesda, Maryland 20205, USA

Extract

Smallpox has been eradicated by immunization with live vaccinia virus. Now, using genetic engineering, infectious vaccinia virus recombinants are being constructed which express genes from other pathogens. These viruses can stimulate specific immunological responses against the foreign antigen in vaccinated animals and can protect against disease caused by the corresponding pathogen. In this paper we describe how recombinant vaccinia viruses are constructed and illustrate the potential of this vector system for expression of genes from parasitic pathogens.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bennink, J. R., Yewdell, J. W., Smith, G. L., Moller, C. & Moss, B. (1984). Recombinant vaccinia primes and stimulates influenza haemagglutinin-specific cytotoxic lymphocytes. Nature, London 311, 578–9.CrossRefGoogle Scholar
Buller, R. M. L., Smith, G. L., Cremer, K., Notkins, A. L. & Moss, B. (1985). Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase negative phenotype. Nature, London 317, 813–15.CrossRefGoogle ScholarPubMed
Chakrabati, S., Brechling, K. & Moss, B. (1985). Vaccinia virus expression vector: co-expression of β-galactosidase provides visual screening of recombinant virus plaques. Molecular and Cellular Biology (in the Press).Google Scholar
Cochran, M. A., Mackett, M. & Moss, B. (1985 a). Eukaryotic transient expression system dependent on transcription factors and regulatory DNA sequences of vaccinia virus. Proceedings of the National Academy of Sciences, USA 82, 1923.CrossRefGoogle ScholarPubMed
Cochran, M. A., Puckett, C. & Moss, B. (1985 b). In vitro mutagenesis of the promoter region for a vaccinia virus gene: evidence for tandem early and late regulatory signals. Journal of Virology 54, 30–7.CrossRefGoogle ScholarPubMed
Cochrane, A. H., Nussenzweig, R. S. & Nardin, E. H. (1980). In Malaria, vol. 3 (ed. Kreier, J.), pp. 163202. New York: Academic Press.CrossRefGoogle Scholar
Cochrane, A. H., Santoro, F., Nussenzweig, V., Gwadz, R. W. & Nussenzweio, R. S. (1982). Monoclonal antibodies identify the protective antigens of sporozoites of Plasmodium knowlesi. Proceedings of the National Academy of Sciences, USA 79, 5651–5.CrossRefGoogle ScholarPubMed
Cremer, K. J., Mackett, M., Wohlenberg, C., Notkins, A. L. & Moss, B. (1985). Vaccinia virus recombinant expressing the herpes simplex virus type-1 glycoprotein D prevents latent herpes in mice. Science 228, 737–9.CrossRefGoogle ScholarPubMed
Dame, J. B., Williams, J. L., McCutchan, T. F., Weber, J. L., Wirtz, R. A., Hockmeyer, W. T., Malay, W. L., Haynes, J. D., Schneider, I., Roberts, D., Sanders, G. S., Reddy, E. P., Diggs, C. L. & Miller, L. H. (1984). Structure of the gene encoding the immuno-dominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science 225, 593–9.CrossRefGoogle Scholar
Ellis, J., Ozaki, L. S., Gwadz, R. W., Cochrane, A. H., Nussenzweig, V., Nussenzweig, R. S. & Godson, G. N. (1983). Cloning and expression in E. coli of the malarial sporozoite surface antigen gene from Plasmodium knowlesi. Nature, London 302, 536–8.CrossRefGoogle Scholar
Ena, V., Ellis, J., Zavala, F., Arnot, D. E., Asavanich, A., Quakyi, I. & Nussenzweig, R. S. (1984). DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope. Science 225, 628–30.CrossRefGoogle Scholar
Franke, C. A., Rice, C. M., Strauss, J. H. & Hruby, D. E. (1985). Neomycin resistance as a dominant selectable marker for selection and isolation of vaccinia recombinants. Molecular and Cellular Biology 5, 1918–24.Google Scholar
Godson, G. N., Ellis, J., Svec, P., Schlesinger, D. H. & Nussenzweig, V. (1983). Identification and chemical synthesis of an epitope of the Plasmodium knowlesi circumsporozoite protein. Evidence for its tandemly repeated nature. Nature, London 305, 2933.CrossRefGoogle Scholar
Jenner, E. (1798). An Inquiry into the Causes and Effects of Variolae Vaccinae, a Disease Discovered in some Western Counties of England, particularly Gloucestershire, and known by the name of Cowpox. Reprinted: Cassell, London, 1896.Google Scholar
Jones, E. V. & Moss, B. (1984). Mapping of the vaccinia virus DNA polymerase gene by marker rescue and by cell-free translation of selected RNA. Journal of Virology 49, 72–7.CrossRefGoogle ScholarPubMed
Kieny, M. P., Lathe, R., Drillien, R., Spehner, D., Skory, S., Schmitt, D., Wiktor, T., Koprowski, H. & Lecocq, J. P.Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature, London 312, 163–6.CrossRefGoogle Scholar
Lane, J. M., Ruben, F. L., Neff, J. M. & Millar, J. D. (1969). Complications of smallpox vaccination, 1968. National surveillance in the United States. New England Journal of Medicine 281, 1201–08.CrossRefGoogle Scholar
Mackett, M. & Archard, L. E. (1979). Conservation and variation in the orthopoxvirus genome structure. Journal of General Virology 45, 683702.CrossRefGoogle ScholarPubMed
Mackett, M., Smith, G. L. & Moss, B. (1982). Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences, USA 79, 7415–19.CrossRefGoogle ScholarPubMed
Mackett, M., Smith, G. L. & Moss, B. (1984). A general method for the production and selection of infectious vaccinia virus recombinants expressing foreign genes. Journal of Virology 49, 857–64.CrossRefGoogle ScholarPubMed
Mackett, M., Yilma, T., Rose, J. K. & Moss, B. (1985). Vaccinia virus recombinants: expression of VSV genes and protective immunization of mice and cattle. Science 227, 433–5.CrossRefGoogle ScholarPubMed
Moss, B. (1985). Replication of poxviruses. In ‘Virology’ (ed. Fields, B. N.), pp. 685703. New York: Raven Press.Google Scholar
Moss, B., Smith, G. L., Gerin, J. L. & Purcell, R. H. (1984). Live vaccinia virus recombinant protects chimpanzees against hepatitis B. Nature, London 311, 67–9.CrossRefGoogle ScholarPubMed
Ozaki, L. S., Svec, P., Nussenzweig, R. S., Nussenzweig, V. & Godson, G. N. (1983). Structure of the Plasmodium knowlesi gene coding for the circumsporozoite protein. Cell 34, 815–22.CrossRefGoogle ScholarPubMed
Panicali, D., Davis, S. W., Weinberg, R. L. & Paoletti, E. (1983). Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus haemagglutinin. Proceedings of the National Academy of Sciences, USA 80, 5364–8.CrossRefGoogle Scholar
Panicali, D. & Paoletti, E. (1982). Construction of poxvirus as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proceedings of the National Academy of Sciences, USA 79, 4927–31.CrossRefGoogle ScholarPubMed
Paoletti, E., Lipinskas, B. R., Samsonoff, C., Mercer, S. & Panicali, D. (1984). Construction of live vaccines using genetically engineered poxviruses: biological activity of vaccinia virus recombinants expressing the hepatitis B virus surface antigen and the herpes simplex glycoprotein D. Proceedings of the National Academy of Sciences, USA 81, 193–7.CrossRefGoogle ScholarPubMed
Perkus, M. E., Piccini, A., Lipinskas, B. R. & Paoletti, E. (1985). Recombinant vaccinia virus: immunization against multiple pathogens. Science 229, 981–4.CrossRefGoogle ScholarPubMed
Puckett, C. & Moss, B. (1983). Selective transcription of vaccinia virus genes in template dependent extracts of infected cells. Cell 35, 441–8.CrossRefGoogle ScholarPubMed
Smith, G. L., Godson, N. G., Nussenzweig, V., Nussenzweig, R. S., Barnwell, J. & Moss, B. (1984). Plasmodium knowlesi sporozoite antigen: expression by infectious recombinant vaccinia virus. Science 224, 397–9.CrossRefGoogle ScholarPubMed
Smith, G. L., Mackett, M. & Moss, B. (1983 a). Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature, London 302, 490–5.CrossRefGoogle ScholarPubMed
Smith, G. L. & Moss, B. (1983). Infectious poxvirus vectors have capacity for at least 25,000 base pairs of foreign DNA. Gene 25, 21–8.CrossRefGoogle Scholar
Smith, G. L., Murphy, B. R. & Moss, B. (1983 b). Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proceedings of the National Academy of Sciences, USA 80, 7155–9.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Stroobant, P., Rice, A. P., Gullick, W. J., Cheng, D. J., Kerr, I. M. & Waterfield, M. D. (1985). Purification and characterization of vaccinia virus growth factor. Cell 42, 383–93.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle ScholarPubMed
Traktman, P., Sridhar, P., Condit, R. C. & Roberts, B. E. (1984). Transcriptional mapping of the DNA polymerase gene of vaccinia virus. Journal of Virology 49, 125–31.CrossRefGoogle ScholarPubMed
Venkatesan, S., Baroudy, B. M. & Moss, B. (1981). Distinctive nucleotide sequence adjacent to multiple initiation and termination sites of an early vaccinia gene. Cell 25, 805–13.CrossRefGoogle Scholar
Venkatesan, S., Gershowitz, A. & Moss, B. (1982). Complete nucleotide sequence of two vaccinia virus genes located within the inverted terminal repetition. Journal of Virology 44, 637–46.CrossRefGoogle ScholarPubMed
Weir, J. P. & Moss, B. (1983). Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations. Journal of Virology 46, 530–7.CrossRefGoogle ScholarPubMed
Weir, J. P. & Moss, B. (1984). Regulation of expression and nucleotide sequence of a late vaccinia virus gene. Journal of Virology 51, 662–9.CrossRefGoogle ScholarPubMed
Wiktor, T. J., MacFarlan, R. I., Reagan, K. J., Dietzschold, B., Curtis, P. J., Wunner, W. H., Keiny, M.-P., Lathe, R., Lecocq, J.-P., Mackett, M., Moss, B. & Koprowski, H. (1984). Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proceedings of the National Academy of Sciences, USA 81, 7194–8.CrossRefGoogle ScholarPubMed
Wittek, R., Hänggi, M. & Hiller, G. (1984). Mapping of a gene coding for a major late structural polypeptide on the vaccinia virus genome. Journal of Virology 49, 371–8.CrossRefGoogle Scholar
Yewdell, J. W., Bennink, J. R., Smith, G. L. & Moss, B. (1985). Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences, USA 82, 1785–9.CrossRefGoogle Scholar