Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-l4dq5 Total loading time: 0.5 Render date: 2022-06-25T21:04:24.919Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Screening diagnostic candidates from Leishmania infantum proteins for human visceral leishmaniasis using an immunoproteomics approach

Published online by Cambridge University Press:  13 June 2019

Daniela P. Lage
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Fernanda Ludolf
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Patrícia C. Silveira
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Amanda S. Machado
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Fernanda F. Ramos
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Daniel S. Dias
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Patrícia A. F. Ribeiro
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Lourena E. Costa
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Danniele L. Vale
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Grasiele S. V. Tavares
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Vívian T. Martins
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Miguel A. Chávez-Fumagalli
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Rachel B. Caligiorne
Affiliation:
Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
Ana T. Chaves
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Denise U. Gonçalves
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Manoel O. C. Rocha
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Mariana C. Duarte
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Eduardo A. F. Coelho*
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
*
Author for correspondence: Eduardo A. F. Coelho, E-mail: eduardoferrazcoelho@yahoo.com.br

Abstract

There is no suitable vaccine against human visceral leishmaniasis (VL) and available drugs are toxic and/or present high cost. In this context, diagnostic tools should be improved for clinical management and epidemiological evaluation of disease. However, the variable sensitivity and/or specificity of the used antigens are limitations, showing the necessity to identify new molecules to be tested in a more sensitive and specific serology. In the present study, an immunoproteomics approach was performed in Leishmania infantum promastigotes and amastigotes employing sera samples from VL patients. Aiming to avoid undesired cross-reactivity in the serological assays, sera from Chagas disease patients and healthy subjects living in the endemic region of disease were also used in immunoblottings. The most reactive spots for VL samples were selected, and 29 and 21 proteins were identified in the promastigote and amastigote extracts, respectively. Two of them, endonuclease III and GTP-binding protein, were cloned, expressed, purified and tested in ELISA experiments against a large serological panel, and results showed high sensitivity and specificity values for the diagnosis of disease. In conclusion, the identified proteins could be considered in future studies as candidate antigens for the serodiagnosis of human VL.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, F, Bilbe, G, Blesson, S, Goyal, V, Monnerat, S, Mowbray, C, Muthoni, GO, Pécoul, B, Rijal, S, Rode, J, Solomos, A, Strub-Wourgaft, N, Wasunna, M, Wells, S, Zijlstra, EE, Arana, B and Alvar, J (2018) Recent development of visceral leishmaniasis treatments: successes, pitfalls, and perspectives. Clinical Microbiology Reviews 31, e00048.CrossRefGoogle Scholar
Bayih, AG, Daifalla, NS and Gedamu, L (2014) DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+ T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant. PLoS Neglected Tropical Diseases 8, e3391.CrossRefGoogle Scholar
Brotherton, MC, Racine, G, Foucher, AL, Drummelsmith, J, Papadopoulou, B and Ouellette, M (2010) Analysis of stage-specific expression of basic proteins in Leishmania infantum. Journal of Proteome Research 9, 38423853.CrossRefGoogle ScholarPubMed
Burza, S, Croft, SL and Boelaert, M (2018) Leishmaniasis. Lancet 392, 951970.CrossRefGoogle ScholarPubMed
Carrillo, E, Crusat, M, Nieto, J, Chicharro, C, Thomas, MC, Martínez, E, Valladares, B, Cañavate, C, Requena, JM, López, MC, Alvar, J and Moreno, J (2008) Immunogenicity of HSP-70, KMP-11 and PFR-2 leishmanial antigens in the experimental model of canine visceral leishmaniasis. Vaccine 26, 19021911.CrossRefGoogle ScholarPubMed
Chambers, G, Lawrie, L, Cash, P and Murray, GI (2000) Proteomics: a new approach to the study of disease. The Journal of Pathology 192, 280288.3.0.CO;2-L>CrossRefGoogle Scholar
Chávez-Fumagalli, MA, Schneider, MS, Lage, DP, Machado-de-Ávila, RA and Coelho, EA (2017) An in silico functional annotation and screening of potential drug targets derived from Leishmania spp. hypothetical proteins identified by immunoproteomics. Experimental Parasitology 176, 6674.CrossRefGoogle Scholar
Chávez-Fumagalli, MA, Lage, DP, Tavares, GSV, Mendonça, DVC, Dias, DS, Ribeiro, PAF, Ludolf, F, Costa, LE, Coelho, VTS and Coelho, EAF (2019) In silico Leishmania proteome mining applied to identify drug target potential to be used to treat against visceral and tegumentary leishmaniasis. Journal of Molecular Graphics and Modelling 87, 8997.CrossRefGoogle ScholarPubMed
Coelho, EA, Tavares, CA, Carvalho, FA, Chaves, KF, Teixeira, KN, Rodrigues, RC, Charest, H, Matlashewski, G, Gazzinelli, RT and Fernandes, AP (2003) Immune responses induced by the Leishmania (leishmania) donovani a2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infection and Immunity 71, 39883994.CrossRefGoogle Scholar
Coelho, VT, Oliveira, JS, Valadares, DG, Chávez-Fumagalli, MA, Duarte, MC, Lage, PS, Soto, M, Santoro, MM, Tavares, CA, Fernandes, AP and Coelho, EA (2012) Identification of proteins in promastigote and amastigote-like Leishmania using an immunoproteomic approach. PLoS Neglected Tropical Diseases 6, e1430.CrossRefGoogle ScholarPubMed
Coulson, RM, Connor, V, Chen, JC and Ajioka, JW (1996) Differential expression of Leishmania major beta-tubulin genes during the acquisition of promastigote infectivity. Molecular and Biochemical Parasitology 82, 227236.CrossRefGoogle ScholarPubMed
Dias, DS, Martins, VT, Ribeiro, PAF, Ramos, FF, Lage, DP, Tavares, GSV, Mendonça, DVC, Chávez-Fumagalli, MA, Oliveira, JS, Silva, ES, Gomes, DA, Rodrigues, MA, Duarte, MC, Galdino, AS, Menezes-Souza, D and Coelho, EAF (2018) Antigenicity, immunogenicity and protective efficacy of a conserved Leishmania hypothetical protein against visceral leishmaniasis. Parasitology 145, 740751.CrossRefGoogle ScholarPubMed
Didwania, N, Shadab, M, Sabur, A and Ali, N (2017) Alternative to chemotherapy-the unmet demand against leishmaniasis. Frontiers in Immunology 8, 1779.CrossRefGoogle ScholarPubMed
Drini, S, Criscuolo, A, Lechat, P, Imamura, H, Skalický, T, Rachidi, N, Lukeš, J, Dujardin, JC and Späth, GF (2016) Species- and strain-specific adaptation of the HSP70 super family in pathogenic Trypanosomatids. Genome Biology and Evolution 8, 19801995.CrossRefGoogle ScholarPubMed
Duarte, MC, Pimenta, DC, Menezes-Souza, D, Magalhães, RD, Diniz, JL, Costa, LE, Chávez-Fumagalli, MA, Lage, PS, Bartholomeu, DC, Alves, MJ, Fernandes, AP, Soto, M, Tavares, CA, Gonçalves, DU, Rocha, MO and Coelho, EA (2015) Proteins selected in Leishmania (viannia) braziliensis by an immunoproteomic approach with potential serodiagnosis applications for tegumentary leishmaniasis. Clinical and Vaccine Immunology 22, 11871196.CrossRefGoogle ScholarPubMed
Duarte, MC, Lage, DP, Martins, VT, Costa, LE, Salles, BCS, Carvalho, AMRS, Oliveira, TTS, Dias, DS, Ribeiro, PAF, Chávez-Fumagalli, MA, Machado-de-Ávila, RA, Roatt, BM, Menezes-Souza, D, Magalhães-Soares, DF and Coelho, EAF (2017) Performance of Leishmania braziliensis enolase protein for the serodiagnosis of canine and human visceral leishmaniasis. Veterinary Parasitology 238, 7781.CrossRefGoogle Scholar
Ejazi, SA, Bhattacharyya, A, Choudhury, ST, Ghosh, S, Sabur, A, Pandey, K, Das, VNR, Das, P, Rahaman, M, Goswami, RP and Ali, N (2018) Immunoproteomic identification and characterization of Leishmania membrane proteins as non-invasive diagnostic candidates for clinical visceral leishmaniasis. Scientific Reports 8, 12110.CrossRefGoogle ScholarPubMed
Fernandes, AP, Coelho, EAF, Machado-Coelho, GLL, Grimaldi, J and Gazzinelli, RT (2012) Making an anti-amastigote vaccine for visceral leishmaniasis: rational, update and perspectives. Current Opinion in Microbiology 15, 110.CrossRefGoogle Scholar
Garg, G, Singh, K and Ali, V (2018) Proteomic approaches unravel the intricacy of secreted proteins of Leishmania: an updated review. Biochimica et Biophysica Acta – Proteins and Proteomics 1866, 913923.CrossRefGoogle ScholarPubMed
Georgiadou, SP, Makaritsis, KP and Dalekos, GN (2015) Leishmaniasis revisited: current aspects on epidemiology, diagnosis and treatment. Journal of Translational Internal Medicine 3, 4350.CrossRefGoogle Scholar
Grimaldi, G Jr, Teva, A, Porrozzi, R, Pinto, MA, Marchevsky, RS, Rocha, MG, Dutra, MS, Bruña-Romero, O, Fernandes, AP and Gazzinelli, RT (2014) Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen. PLoS Neglected Tropical Diseases 8, e2853.CrossRefGoogle Scholar
Ishemgulova, A, Kraeva, N, Hlaváčová, J, Zimmer, SL, Butenko, A, Podešvová, L, Leštinová, T, Lukeš, J, Kostygov, A, Votýpka, J, Volf, P and Yurchenko, V (2017) A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Neglected Tropical Diseases 11, e0005782.CrossRefGoogle ScholarPubMed
Jamal, F, Shivam, P, Kumari, S, Singh, MK, Sardar, AH, Pushpanjali, MS, Narayan, S, Gupta, AK, Pandey, K, Das, VNR, Ali, V, Bimal, S, Das, P and Singh, SK (2017) Identification of Leishmania donovani antigen in circulating immune complexes of visceral leishmaniasis subjects for diagnosis. PLoS One 12, e0182474.CrossRefGoogle ScholarPubMed
Kapil, S, Singh, PK and Silakari, O (2018) An update on small molecule strategies targeting leishmaniasis. European Journal of Medicinal Chemistry 157, 339367.CrossRefGoogle ScholarPubMed
Kumar, A and Samant, M (2016) DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control. Parasite Immunology 38, 273281.CrossRefGoogle ScholarPubMed
Kumar, V, Sharma, M, Rakesh, BR, Malik, CK, Neelagiri, S, Neerupudi, KB, Garg, P and Singh, S (2018) Pyridoxal kinase: a vitamin B6 salvage pathway enzyme from Leishmania donovani. International Journal of Biological Macromolecules 119, 320334.CrossRefGoogle ScholarPubMed
Kumari, S, Kumar, A, Samant, M, Sundar, S, Singh, N and Dube, A (2008) Proteomic approaches for discovery of new targets for vaccine and therapeutics against visceral leishmaniasis. Proteomics – Clinical Applications 2, 372386.CrossRefGoogle ScholarPubMed
Lage, DP, Martins, VT, Duarte, MC, Costa, LE, Garde, E, Dimer, LM, Kursancew, AC, Chávez-Fumagalli, MA, Magalhães-Soares, DF, Menezes-Souza, D, Roatt, BM, Machado-de-Ávila, RA, Soto, M, Tavares, CA and Coelho, EA (2016) A new Leishmania-specific hypothetical protein and its non-described specific B cell conformational epitope applied in the serodiagnosis of canine visceral leishmaniasis. Parasitology Research 115, 16491658.CrossRefGoogle ScholarPubMed
Lang, T, Chastellier, C, Frehel, C, Hellio, R, Metezeau, P, Leão, SS and Antoine, JC (1994) Distribution of MHC class I and of MHC class II molecules in macrophages infected with Leishmania amazonensis. Journal of Cell Science 107, 6982.Google ScholarPubMed
Lewis, TS, Hunt, JB, Aveline, LD, Jonscher, KR, Louie, DF, Yeh, JM, Nahreini, TS, Resing, KA and Ahn, NG (2000) Identification of novel MAP kinase pathway signalling targets by functional proteomics and mass spectrometry. Molecular Cell 6, 13431354.CrossRefGoogle Scholar
Lima, MP, Costa, LE, Duarte, MC, Menezes-Souza, D, Salles, BCS, Santos, TTO, Ramos, FF, Chávez-Fumagalli, MA, Kursancew, ACS, Ambrósio, RP, Roatt, BM, Machado-de-Ávila, RA, Gonçalves, DU and Coelho, EAF (2017) Evaluation of a hypothetical protein for serodiagnosis and as a potential marker for post-treatment serological evaluation of tegumentary leishmaniasis patients. Parasitology Research 116, 11971206.CrossRefGoogle ScholarPubMed
Magalhães, RD, Duarte, MC, Mattos, EC, Martins, VT, Lage, PS, Chávez-Fumagalli, MA, Lage, DP, Menezes-Souza, D, Régis, WC, Alves, MJ, Soto, M, Tavares, CA, Nagen, RA and Coelho, EA (2014) Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Neglected Tropical Diseases 8, e2764.CrossRefGoogle ScholarPubMed
Martins, VT, Chávez-Fumagalli, MA, Costa, LE, Canavacci, AM, Martins, AM, Lage, PS, Lage, DP, Duarte, MC, Valadares, DG, Magalhães, RD, Ribeiro, TG, Nagem, RA, DaRocha, WD, Régis, WC, Soto, M, Coelho, EA, Fernandes, AP and Tavares, CA (2013) Antigenicity and protective efficacy of a Leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis. PLoS Neglected Tropical Diseases 7, e2148.CrossRefGoogle ScholarPubMed
Maspi, N, Ghaffarifar, F, Sharifi, Z and Dalimi, A (2015) Cloning and constructing a plasmid encoding Leishmania eukaryotic initiation factor gene of Leishmania major fused with green fluorescent protein gene as a vaccine candidate. West Indian Medical Journal 65, 256259.Google ScholarPubMed
Mishra, A, Khan, MI, Jha, PK, Kumar, A, Das, S, Das, P and Sinha, KK (2018) Oxidative stress-mediated overexpression of uracil DNA glycosylase in Leishmania donovani confers tolerance against antileishmanial drugs. Oxidative Medicine and Cellular Longevity 2018, 4074357.CrossRefGoogle ScholarPubMed
Moreira, DS, Pescher, P, Laurent, C, Lenormand, P, Späth, GF and Murta, SM (2015) Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology. Proteomics 15, 29993019.CrossRefGoogle Scholar
Moreira, VR, Jesus, LCL, Soares, RP, Silva, LDM, Pinto, BAS, Melo, MN, Paes, AMA and Pereira, SRF (2017) Meglumine antimoniate (glucantime) causes oxidative stress-derived DNA damage in BALB/c mice infected by Leishmania (Leishmania) infantum. Antimicrobial Agents and Chemotherapy 61, e02360.CrossRefGoogle ScholarPubMed
Mortazavidehkordi, N, Farjadfar, A, Khanahmad, H, Najafabadi, ZG, Hashemi, N, Fallah, A, Najafi, A, Kia, V and Hejazi, SH (2016) Evaluation of a novel lentiviral vaccine expressing KMP11-HASPB fusion protein against Leishmania infantum in BALB/c mice. Parasite Immunology 38, 670677.CrossRefGoogle ScholarPubMed
Mukherjee, I, Chakraborty, A and Chakrabarti, S (2016) Identification of internalin-A-like virulent proteins in Leishmania donovani. Parasite & Vectors 9, 557.CrossRefGoogle ScholarPubMed
Nandan, D, Thomas, SA, Nguyen, A, Moon, KM, Foster, LJ and Reiner, NE (2017) Comprehensive identification of mRNA-binding proteins of Leishmania donovani by interactome capture. PLoS One 12, e0170068.CrossRefGoogle ScholarPubMed
Neuhoff, V, Arold, N, Taube, D and Ehrhardt, W (1988) Improved staining of proteins in polyacrilamide gels including isoeletric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255262.CrossRefGoogle Scholar
Nico, D, Claser, C, Borja-Cabrera, GP, Travassos, LR, Palatnik, M, Soares, IS, Rodrigues, MM and Palatnik-de-Sousa, CB (2010) Adaptive immunity against Leishmania nucleoside hydrolase maps its c-terminal domain as the target of the CD4+ T cell-driven protective response. PLoS Neglected Tropical Diseases 4, e866.CrossRefGoogle Scholar
Rajão, MA, Furtado, C, Alves, CL, Passos-Silva, DG, Moura, MB, Schamber-Reis, BL, Kunrath-Lima, M, Zuma, AA, Vieira-da-Rocha, JP, Garcia, JB, Mendes, IC, Pena, SD, Macedo, AM, Franco, GR, Souza-Pinto, NC, Medeiros, MH, Cruz, AK, Motta, MC, Teixeira, SM and Machado, CR (2014) Unveiling Benznidazole's mechanism of action through overexpression of DNA repair proteins in Trypanosoma cruzi. Environmental and Molecular Mutagenesis 55, 309321.CrossRefGoogle ScholarPubMed
Ribeiro, PAF, Dias, DS, Novais, MVM, Lage, DP, Tavares, GSV, Mendonça, DVC, Oliveira, JS, Chávez-Fumagalli, MA, Roatt, BM, Duarte, MC, Menezes-Souza, D, Ludolf, F, Tavares, CAP, Oliveira, MC and Coelho, EAF (2018) A Leishmania hypothetical protein-containing liposome-based formulation is highly immunogenic and induces protection against visceral leishmaniasis. Cytokine 111, 131139.CrossRefGoogle ScholarPubMed
Sabur, A, Bhowmick, S, Chhajer, R, Ejazi, SA, Didwania, N, Asad, M, Bhattacharyya, A, Sinha, U and Ali, N (2018) Liposomal elongation factor-1α triggers effector CD4 and CD8 T cells for induction of long-lasting protective immunity against visceral leishmaniasis. Frontiers in Immunology 9, 18.CrossRefGoogle ScholarPubMed
Sakkas, H, Gartzonika, C and Levidiotou, S (2016) Laboratory diagnosis of human visceral leishmaniasis. Journal of Vectors Borne Diseases 53, 816.Google ScholarPubMed
Santos, TTO, Martins, VT, Lage, DP, Costa, LE, Salles, BCS, Carvalho, AMRS, Dias, DS, Ribeiro, PAF, Chávez-Fumagalli, MA, Machado-de-Ávila, RA, Roatt, BM, Magalhães-Soares, DF, Menezes-Souza, D, Coelho, EAF and Duarte, MC (2017) Probing the efficacy of a heterologous Leishmania/l. Viannia braziliensis recombinant enolase as a candidate vaccine to restrict the development of L. infantum in BALB/c mice. Acta Tropica 171, 816.CrossRefGoogle ScholarPubMed
Sundar, S and Singh, OP (2018) Molecular diagnosis of visceral leishmaniasis. Molecular Diagnosis & Therapy 22, 443457.CrossRefGoogle ScholarPubMed
Torres-Guerrero, E, Quintanilla-Cedillo, MR, Ruiz-Esmenjaud, J and Arenas, R (2017) Leishmaniasis: a review. F1000Research 6, 750.CrossRefGoogle ScholarPubMed
Valadares, DG, Duarte, MC, Oliveira, JS, Chávez-Fumagalli, MA, Martins, VT, Costa, LE, Leite, JP, Santoro, MM, Régis, WC, Tavares, CA and Coelho, EA (2011) Leishmanicidal activity of the Agaricus blazei murill in different Leishmania species. Parasitology International 60, 357363.CrossRefGoogle ScholarPubMed
Vijayakumar, S and Das, P (2018) Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Tropica 181, 95104.CrossRefGoogle ScholarPubMed
Vlahou, A and Fountoulakis, M (2005) Proteomic approaches in the search for disease biomarkers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 814, 1119.CrossRefGoogle ScholarPubMed
World Health Organization (2016) Leishmaniasis. Available at http://www.who.int/topics/leishmaniasis/en/.Google Scholar
12
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Screening diagnostic candidates from Leishmania infantum proteins for human visceral leishmaniasis using an immunoproteomics approach
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Screening diagnostic candidates from Leishmania infantum proteins for human visceral leishmaniasis using an immunoproteomics approach
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Screening diagnostic candidates from Leishmania infantum proteins for human visceral leishmaniasis using an immunoproteomics approach
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *