Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T00:30:35.299Z Has data issue: false hasContentIssue false

Phenotypic plasticity of taxonomic and diagnostic structures in gyrodactylosis-causing flatworms (Monogenea, Platyhelminthes)

Published online by Cambridge University Press:  07 August 2009

K. OLSTAD*
Affiliation:
Natural History Museum, Department of Zoology, University of Oslo, P.O. Box 1172, NO-0318 Oslo, Norway
L. BACHMANN
Affiliation:
Natural History Museum, Department of Zoology, University of Oslo, P.O. Box 1172, NO-0318 Oslo, Norway
T. A. BAKKE
Affiliation:
Natural History Museum, Department of Zoology, University of Oslo, P.O. Box 1172, NO-0318 Oslo, Norway
*
*Corresponding author. Present address: National Veterinary Institute, Section for Parasitology, Pb 750 Sentrum NO-0106 Oslo, Norway. Tel: +47 23 21 61 56. Fax: +47 23 21 61 01. E-mail: kjetil.olstad@vetinst.no

Summary

The present study addresses the effect of varying temperature and host species on the size and shape of the opisthaptoral hard-parts in isogenic strains of Gyrodactylus salaris and G. thymalli. Variation in shape was examined using geometric morphometrics. Since the opisthaptoral hard-parts of Gyrodactylus have few specific landmarks, their shape information mostly being represented by outlines and surfaces, a method based on sliding semi-landmarks was applied. The ventral bars of G. salaris did not follow the previously postulated negative correlation between size and temperature, and the largest hamuli and marginal hooks from G. salaris and the smallest from G. thymalli clearly overlapped in size. Consistent shape differences with temperature were detected for the hard-parts from G. thymalli but not from G. salaris. The hard-parts of G. salaris were similar in size but significantly different in shape when grown on secondary hosts rather than the primary host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D. C., Rohlf, F. J. and Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the “revolution”. Italian Journal of Zoology 71, 5–16.CrossRefGoogle Scholar
Anderson, M. E. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.Google Scholar
Bookstein, F. L. (1996). Applying landmark methods to biological outline data. In Image Fusion and Shape Variability (ed. Mardia, K. V., Gill, C. A. and Dryden, I. L.), pp. 5970. University of Leeds Press, Leeds, UK.Google Scholar
Bookstein, F. L. (1997). Landmark methods for forms without landmarks: localizing group differences in outline shape. Medical Image Analysis 1, 225243.CrossRefGoogle Scholar
Bookstein, F. L., Streissguth, A. P., Sampson, P. D., Connor, P. D. and Barr, H. M. (2002). Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. Neuroimage 15, 233251.CrossRefGoogle ScholarPubMed
Buchmann, K. and Bresciani, J. (1997). Parasitic infections in pond-reared rainbow trout Oncorhynchus mykiss in Denmark. Diseases of Aquatic Organisms 28, 125138.CrossRefGoogle Scholar
Cable, J. and Harris, P. D. (2002). Gyrodactylid developmental biology: historical review, current status and future trends. International Journal for Parasitology 32, 255280. DOI:10.1016/S0020-7519(01)00330-7CrossRefGoogle ScholarPubMed
Cable, J., Tinsley, R. C. and Harris, P. D. (2002). Survival, feeding and embryo development of Gyrodactylus gasterostei (Monogenea: Gyrodactylidae). Parasitology 124, 5368. DOI: 10.1017/S0031182001008861CrossRefGoogle ScholarPubMed
Dávidová, M., Jarkovský, J., Matějusová, I. and Gelnar, M. (2005). Seasonal occourence and metric variability of Gyrodactylus rhodei Žitňan 1964 (Monogenea, Gyrodactylidae). Parasitology Research 95, 398405. DOI:10.1007/s00436-005-1311-0CrossRefGoogle Scholar
Dmitrieva, E. and Dimitrov, G. (2002). Variability in the taxonomic characters of Black Sea gyrodactylids (Monogenea). Systematic Parasitology 51, 199206.CrossRefGoogle ScholarPubMed
Green, W. D. K. (1996). The thin-plate spline and images with curving features. In Image Fusion and Shape Variability (ed. Mardia, K. V., Gill, C. A. and Dryden, I. L.), pp. 7987. University of Leeds Press, Leeds, UK.Google Scholar
Hammer, Ø., Harper, D. A. T. and Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4, 9pp.Google Scholar
Harris, P. D. (1998). Ecological and genetic evidence for clonal reproduction in Gyrodactylus gasterostei Gläser, 1974. International Journal for Parasitology 28, 15951607.CrossRefGoogle ScholarPubMed
Harris, P. D., Cable, J., Tinsley, R. C. and Lazarus, C. M. (1999). Combined ribosomal DNA and morphological analysis of individual gyrodactylid monogeneans. Journal of Parasitology 85, 188191.CrossRefGoogle ScholarPubMed
Harris, P. D., Shinn, A. P., Cable, J. and Bakke, T. A. (2004). Nominal species of the genus Gyrodactylus von Normann 1832 (Monogenea: Gyrodactylidae), with a list of principal host species. Systematic Parasitology 59, 127. DOI:10.1023/B:SYPA.0000038447/52015.e4CrossRefGoogle Scholar
Huyse, T. and Volckaert, F. A. M. (2002). Identification of a host-associated species complex using molecular and morphometric analyses, with the description of Gyrodactylus rugiensoides n. sp. (Gyrodactylidae, Monogenea). International Journal for Parasitology 32, 907919. DOI:10.1016/S0020-7519(02)00026-7CrossRefGoogle Scholar
Jackson, J. A. and Tinsley, R. C. (1995). Sclerite growth and morphometric variation in Gyrodactylus gallieni Vercammen-Grandjean, 1960 (Monogenea: Gyrodactylidae) from Xenopus laevis laevis (Anura). Systematic Parasitology 31, 19.CrossRefGoogle Scholar
Jansen, P. A. and Bakke, T. A. (1991). Temperature-dependent reproduction and survival of Gyrdicotylus salaris Malmberg, 1975 (Platyhelminthes: Monogenea) on Atlantic salmon (Salmo salar L.). Parasitology 102, 105112.CrossRefGoogle Scholar
Johnsen, B. O., Møkkelgjerd, P. I. and Jensen, A. J. (1999). The parasite Gyrodactylus salaris on salmon parr in Norwegian rivers, status report at the beginning of year 2000. NINA Oppdragsmelding 617, 1129 (in Norwegian).Google Scholar
Kayton, R. J. (1983). Histochemichal and X-ray elemental analysis of the sclerites of Gyrodactylus spp. (Platyhelminthes: Monogenoidea) from the Utah chub, Gila atraria (Girard). Journal of Parasitology 69, 862865.CrossRefGoogle Scholar
Knudsen, R., Adolfsen, P., Sandring, S., Kristoffersen, R., Siikavuopio, S. and Rikardssen, A. (2007). The suitability of anadromous Arctic charr as host and vector of the monogenean Gyrodactylus salaris. Ecology of Freshwater Fish 16, 99–104.CrossRefGoogle Scholar
Koski, P. and Malmberg, G. (1995). Occurrence of Gyrodactylus (Monogenea) on salmon and rainbow trout in fish farms in Northern Finland. Bulletin of the Scandinavian Society for Parasitology 5, 7688.Google Scholar
Kristoffersen, R., Rikardsen, A. H., Winger, A. C., Adolfsen, P. and Knudsen, R. (2005). Arctic charr as long-term host of Gyrodactylus salaris in River Skibotnelva, northern Norway. NINA Rapport 36, 127 (in Norwegian, English summary).Google Scholar
Kulemina, I. V. (1977). Size variability of the adhesive elements in some species of Gyrodactylus. In Investigations of Monogeneans in the USSR (ed. Skarlato, O. A.), pp. 3841. Oxonian Press Pvt. Ltd 1987, New Dehli, India.Google Scholar
MacLeod, N. (2002). Phylogenetic signals in morphometric data. In Morphology, Shape and Phylogeny (ed. MacLeod, N. and Forey, P. L.), pp. 100138. Taylor and Francis, London, UK.CrossRefGoogle Scholar
Malmberg, G. (1970). The excretory systems and the marginal hooks as a basis for the systematics of Gyrodactylus (Trematoda, Monogenea). Arkiv für Zoologie 23, 1235.Google Scholar
Malmberg, G. (1990). On the ontogeny of the haptor and evolution of the Monogenea. Systematic Parasitology 17, 165.CrossRefGoogle Scholar
Malmberg, G. and Malmberg, M. (1991). Investigations for Gyrodactylus on salmonids in natural waters and fish farms during the periods 1951–72 and 1986–May 1991. Information från Söttvattenslaboratoriet—Drottningholm: Fiskeristyrelsens sötvattenslaboratorium 2, 130 (in Swedish, English summary).Google Scholar
Mo, T. A. (1991 a). Seasonal variations of opisthaptoral hard parts of Gyrodactylus salaris Malmberg, 1957 (Monogenea: Gyrodactylidae) on parr of Atlantic salmon Salmo salar L. in the river Batnfjordselva, Norway. Systematic Parasitology 19, 231240.CrossRefGoogle Scholar
Mo, T. A. (1991 b). Variations of opisthaptoral hard parts of Gyrodactylus salaris Malmberg, 1957 (Monogenea: Gyrodactylidae) on rainbow trout (Oncorhynchus mykiss (Walbaum, 1792)) in a fish farm, with comments on the spreading of the parasite in south-eastern Norway. Systematic Parasitology 20, 19.CrossRefGoogle Scholar
Mo, T. A. (1991 c). Variations of opisthaptoral hard parts of Gyrodactylus salaris Malmberg, 1957 (Monogenea: Gyrodactylidae) on parr of Atlantic salmon Salmo salar L. in laboratory experiments. Systematic Parasitology 20, 1119.CrossRefGoogle Scholar
Mo, T. A. (1994). Status of Gyrodactylus salaris problems and research in Norway. In Parasitic Diseases of Fish (ed. Pike, A. W. and Lewis, J. W.), pp. 4358. Samara Publishing Ltd., Samara House, Tresaith, Dyfed, UK.Google Scholar
Olstad, K., Shinn, A. P., Bachmann, L. & Bakke, T. A. (2007). Host-based identification is not supported by morphometrics in natural populations of Gyrodactylus salaris and G. thymalli (Platyhelminthes, Monogenea). Parasitology 134, 20412052. DOI:10.1017/S0031182007003332CrossRefGoogle ScholarPubMed
Robertsen, G., Hansen, H., Bachmann, L. and Bakke, T. A. (2007). Arctic charr (Salvelinus alpinus) is a suitable host for Gyrodactylus salaris (Monogenea, Gyrodactylidae) in Norway. Parasitology 134, 257267. DOI: 10.1017/S0031182006001223CrossRefGoogle ScholarPubMed
Rohlf, F. J. (2006 a). tpsDig, Digitize Landmarks and Outlines, Version 2.10. Department of Ecology and Evolution, State University of New York at Stony Brook, NY, USA.Google Scholar
Rohlf, F. J. (2006 b). tpsUtil, File Utility Program. Version 1.37. Department of Ecology and Evolution, State University of New York at Stony Brook, NY, USA.Google Scholar
Rohlf, F. J. (2007). tpsRelw, Relative Warps Analysis, Version 1.45. Department of Ecology and Evolution, State University of New York at Stony Brook, NY, USA.Google Scholar
Shinn, A. P., Gibson, D. I. and Sommerville, C. (1995). A study of the composition of the sclerites of Gyrodactylus Nordmann, 1832 (Monogenea) using X-ray elemental analysis. International Journal for Parasitology 25, 797805. DOI:10.1016/0020-7519(95)00008-PCrossRefGoogle ScholarPubMed
Shinn, A. P., Hansen, H., Olstad, K., Bachmann, L. and Bakke, T. A. (2004). The use of morphometric characters to discriminate specimens of laboratory-reared and wild populations of Gyrodactylus salaris and G. thymalli (Monogenea). Folia Parasitologica 51, 239252.CrossRefGoogle Scholar
Soleng, A. and Bakke, T. A. (2001). The susceptibility of grayling, Thymallus thymallus to experimental infections with the monogenean Gyrodactylus salaris. International Journal for Parasitology 31, 793797. DOI:10.1016/S0020-7519(01)00188-6CrossRefGoogle ScholarPubMed
Sterud, E., Mo, T. A., Collins, C. M. and Cunningham, C. O. (2002). The use of host specificity, pathogenicity, and molecular markers to differentiate between Gyrodactylus salaris Malmberg, 1957 and G. thymalli Žitňan, 1960 (Monogenea: Gyrodactylidae). Parasitology 124, 203213. DOI: 10.1017/S0031182001001044CrossRefGoogle Scholar
Tautz, D., Arctander, P., Minelli, A., Thomas, R. H. and Vogler, A. P. (2003). A plea for DNA taxonomy. Trends in Ecology and Evolution 18, 7074. DOI:10.1016/S0169-5347(02)00041-1CrossRefGoogle Scholar
Winger, A. C., Kanck, M., Kristoffersen, R. and Knudsen, R. (2008). Seasonal dynamics and persistence of Gyrodactylus salaris in two riverine anadromous Arctic charr populations. Environmental. Environmental Biology of Fishes 83, 117123. DOI: 10.1007/s10641-007-9274-xCrossRefGoogle Scholar
Zelditch, M. L., Swiderski, D. L., Sheets, H. D. and Fink, W. L. (2004). Geometric Morphometrics for Biologists. A Primer. Elsevier Academic Press, London, UK.Google Scholar
Supplementary material: PDF

Olstad supplementary material

Olstad supplementary material

Download Olstad supplementary material(PDF)
PDF 2.8 MB