Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T08:45:31.281Z Has data issue: false hasContentIssue false

In vitro release of the anti-gonadotropic hormone, schistosomin, from the central nervous system of Lymnaea stagnalis is induced with a methanolic extract of cercariae of Trichobilharzia ocellata

Published online by Cambridge University Press:  06 April 2009

H. D. F. H. Schallig
Affiliation:
Faculty of Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
M. J. M. Sassen
Affiliation:
Faculty of Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
M. De Jong-Brink
Affiliation:
Faculty of Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands

Summary

Infection with digenetic trematodes causes an inhibition or complete cessation of fecundity in their intermediate hosts, freshwater snails. It has been demonstrated in the host–parasite combination Lymnaea stagnalis–Trichobilharzia ocellata that the action of the female gonadotropic hormones upon their target organs is inhibited by the peptide schistosomin. Schistosomin is produced in the central nervous system of the snail and released upon parasitic infection. In order to study the in vitro release of schistosomin, a bioassay was developed. Central nervous systems were incubated with either an acetic acid or a methanolic extract of larval stages of Trichobilharzia ocellata (miracidia, mother sporocysts, cercariae). The incubation media were chromatographed using HPLC and released schistosomin (-like material) was tested for bioactivity in the calfluxin bioassay. The in vitro release of schistosomin was only induced with a methanolic extract of cercariae. The nature of the cercarial factor is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, G. C., Chitwood, D. J. & Rees, H. H. (1990). Ecdysteroids in helminths and annelids. Journal of Invertebrate Reproduction and Development 18, 111.CrossRefGoogle Scholar
Bliss, C. J. (1967). Statistics in Biology, Vol 1. New York: McGraw-Hill.Google Scholar
De Jong-Brink, M. & Bergamin-Sassen, M. J. M. (1989). Trichobilharzia ocellata: influence of the infection on the interaction between the dorsal body hormone, a female gonadotropic hormone, and the follicle cells in the gonad of the intermediate snail host Lymnaea stagnalis. Experimental Parasitology 68, 93–8.CrossRefGoogle ScholarPubMed
De Jong-Brink, M., Elsaadany, M. M. & Boer, H. H. (1988 a). Trichobilharzia ocellata: interference with endocrine control of female reproduction of Lymnaea stagnalis. Experimental Parasitology 65, 91100.CrossRefGoogle ScholarPubMed
De Jong-Brink, M., Elsaadany, M. M. & Boer, H. H. (1988 b). Schistosomin, an antagonist of calfluxin. Experimental Parasitology 65, 109–18.CrossRefGoogle ScholarPubMed
Dictus, W. J. A. G., De Jong-Brink, M. & Boer, H. H. (1987). A neuropeptide (calfluxin) is involved in the regulation of the influx of calcium into mitochondria of the albumen gland of the freshwater snail Lymnaea stagnalis. General and Comparative Endocrinology 65, 439–50.CrossRefGoogle ScholarPubMed
Furlong, S. T. (1991). Unique roles for lipids in Schistosoma mansoni. Parasitology Today 7, 5962.CrossRefGoogle ScholarPubMed
Geraerts, W. P. M., Van Leeuwen, J. P. TH., Nuyt, K. & De With, N. D. (1981). Cardioactive peptides of the CNS of the pulmonate snail Lymnaea stagnalis. Experientia 37, 1168–9.CrossRefGoogle Scholar
Halton, D. W., Fairweather, I., Shaw, C. & Johnston, C. F. (1990). Regulatory peptides in parasitic platyhelminths. Parasitology Today 6, 284–90.CrossRefGoogle ScholarPubMed
Hordijk, P. L., Ebberink, R. H. M., De Jong-Brink, M. & Joosse, J. (1989). Receptor mediated inhibition of reproductive activity in a schistosome-infected freshwater snail. In Receptors, Membrane Transport and Signal Transduction, NATO ASI Serie H: Cell Biology, Vol 29, (ed. Evangelopoulos, A. E., Changeux, J. P., Packer, L., Sotiroudis, T. G. & Wirts, K. W. A.), pp. 327–81. Berlin: Springer-Verlag.Google Scholar
Hordijk, P. L., Ebberink, R. H. M., De Jong-Brink, M. & Joosse, J. (1991 a). Isolation of schistosomin, a neuropeptide which antagonizes gonadotropic hormones in a freshwater snail. European Journal of Biochemistry 195, 131–6.CrossRefGoogle Scholar
Hordijk, P. L., Schallig, H. D. F. H., Ebberink, R. H. M., De Jong-Brink, M. & Joosse, J. (1991 b). Primary structure and origin of schistosomin, an antigonadotropic neuropeptide of the pond snail Lymnaea stagnalis. The Biochemical Journal 279, 337–42.CrossRefGoogle ScholarPubMed
Hurd, H. (1990). Physiological and behavioural interactions between parasites and invertebrate hosts. Advances in Parasitology 29, 271318.CrossRefGoogle ScholarPubMed
Joosse, J. & Van Elk, R. (1986). Trichobilharzia ocellata: physiological characterization of giant growth, glycogen depletion and absence of reproductive activity in the intermediate snail host, Lymnaea stagnalis. Experimental Parasitology 62, 113.CrossRefGoogle ScholarPubMed
Joosse, J., Van Elk, R., Mosselman, S., Wortleboer, H. & Van Diepen, J. C. E. (1988). Schistosomin: a pronase-sensitive agent in the haemolymph of Trichobilharzia ocellata-infected Lymnaea stagnalis inhibits the activity of albumen glands in vitro. Parasitology Research 74, 228–34.CrossRefGoogle ScholarPubMed
Lawrence, P. O. (1986). Host–parasite hormonal interactions: an overview. Journal of Insect Physiology 32, 295–8.CrossRefGoogle Scholar
Meuleman, E. A., Huyer, A. R. & Mooij, J. H. (1984). Maintenance of the life cycle of Trichobilharzia ocellata via the duck Anas platyrhynchos and the pond snail Lymnaea stagnalis. Netherlands Journal of Zoology 34, 228–34.Google Scholar
Ramaley, J. A. & Phares, C. K. (1980). Delay of puberty onset in females due to the suppression of growth hormone. Endocrinology 106, 1989–93.CrossRefGoogle Scholar
Rees, H. H. (1984). Biosynthesis of steroid hormones–comparative aspects. Nova acta Leopoldina NF 56, 255, 267–95.Google Scholar
Rubiliani, C. (1985). Response by two species of crabs to a rhizocephalan extract. Journal of Invertebrate Pathology 97, 363–72.Google Scholar
Salem, M. A. M. & Phares, C. K. (1986). Some biochemical effects of the growth hormone analogue produced by plerocercoids of the tapeworm Spirometra mansonoides on carbohydrate metabolism of adipose tissue from normal, diabetic and hypophysectomized rats. Journal of Parasitology 72, 498502.CrossRefGoogle ScholarPubMed
Schallig, H. D. F. H., Hordijk, P. L., Oosthoek, P. W. & De Jong-Brink, M. (1991 a). Schistosomin, a peptide present in the haemolymph of Lymnaea stagnalis infected with Trichobilharzia ocellata, is only produced in the snail's central nervous system. Parasitology Research 77, 152–6.CrossRefGoogle Scholar
Schallig, H. D. F. H., Sassen, M. J. M., Hordijk, P. L. & De Jong-Brink, M. (1991 b). Trichobilharzia ocellata: influence of infection on the fecundity of its intermediate snail host Lymnaea stagnalis and cercarial induction of the release of schistosomin, a snail neuropeptide antagonizing female gonadotropic hormones. Parasitology 102, 8591.CrossRefGoogle ScholarPubMed
Schallig, H. D. F. H., Schut, A., Van Der Knaap, W. P. W. & De Jong-Brink, M. (1990). A simplified medium for the in vitro culture of mother sporocysts of the schistosome Trichobilharzia ocellata. Parasitology Research 76, 278–9.CrossRefGoogle Scholar
Shapiro, S. S. & Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika 52, 591611.CrossRefGoogle Scholar
Slocum, R. D. & Roux, J. R. (1982). An improved method for the subcellular localization of calcium using a modification of the antimonate precipitation technique. Journal of Histochemistry and Cytochemistry 30, 617–29.CrossRefGoogle ScholarPubMed
Sluiters, J. F., Brussaard-Wüst, C. M. & Meuleman, E. A. (1980). The relationship between miracidial dose, production of cercaria and reproductive activity of the host in the combination Trichobilharzia ocellata and Lymnaea stagnalis. Zeitschrift für Parasitenkunde 63, 1326.CrossRefGoogle ScholarPubMed
Sokal, R. R. & Rohlf, F. J. (1981). Biometry. San Francisco: Freeman.Google Scholar
Van Der Steen, W. J., Van Den Hoven, N. P. & Jager, J. C. (1969). A method for breeding and studying freshwater snails under continuous water change with some references on growth and reproduction in Lymnaea stagnlais. Netherlands Journal of Zoology 19, 131–9.CrossRefGoogle Scholar