Hostname: page-component-6d856f89d9-fb4gq Total loading time: 0 Render date: 2024-07-16T05:07:24.488Z Has data issue: false hasContentIssue false

Eukaryotic expression of recombinant Pso o 1, an allergen from Psoroptes ovis, and its localization in the mite

Published online by Cambridge University Press:  18 September 2006

A. J. NISBET
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland
A. MacKELLAR
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland
K. McLEAN
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland
G. P. BRENNAN
Affiliation:
School of Biology and Biochemistry, Queen's University Belfast, Lisburn Road, Belfast BT9 7BL, Northern Ireland
J. F. HUNTLEY
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland

Abstract

A cDNA encoding the immunogen Pso o 1 from Psoroptes ovis was obtained by polymerase chain reaction (PCR) amplification. The amplicon contained the entire coding sequence for the prepro-enzyme in an open reading frame (ORF) of 966 bp. This gene encoded a predicted protein of 322 amino acids (aa) with 64% aa identity (80% similarity) to the major house dust mite faecal allergen Der f 1. The pro-enzyme form of Pso o 1 was expressed as a recombinant protein in the Pichia pastoris-eukaryotic expression system. Maturation of the recombinant pro-enzyme by autocatalytic activation was not observed, and such maturation could not be achieved using a number of techniques known to activate recombinant Der p 1 and Der f 1 expressed in the same system. Serum raised against recombinant Pso o 1 cross-reacted with mature Der p 1 and allowed Pso o 1 to be immunolocalized to the gut of P. ovis.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arlian, L. G. and Platts-Mills, T. A. E. ( 2001). The biology of dust mites and the remediation of mite allergens in allergic disease. Journal of Allergy and Clinical Immunology 107, S406S413.CrossRefGoogle Scholar
Bando, Y., Kominami, E. and Katunuma, N. ( 1986). Purification and tissue distribution of rat cathepsin L. Journal of Biochemistry 100, 3542.CrossRefGoogle Scholar
Chua, K. Y., Stewart, G. A., Thomas, W. R., Simpson, R. J., Dilworth, R. J., Plozza, T. M. and Turner, K. J. ( 1988). Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1. Homology with cysteine proteases. Journal of Experimental Medicine 307, 175182.Google Scholar
Dilworth, R. J., Chua, K. Y. and Thomas, W. R. ( 1991). Sequence analysis of cDNA clone coding for a major house dust mite allergen Der f I. Clinical and Experimental Allergy 21, 2532.CrossRefGoogle Scholar
Dyrløv Bendtsen, J., Nielsen, H., von Heijne, G. and Brunak, S. ( 2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340, 783795.CrossRefGoogle Scholar
Huntley, J. F., Machell, J., Nisbet, A. J., van den Broek, A., Chua, K. Y., Cheong, N., Hales, B. and Thomas, W. R. ( 2004). Identification of tropomyosin, paramyosin and apolipophorin/vitellogenin as three major allergens of the sheep scab mite, Psoroptes ovis. Parasite Immunology 26, 335342.CrossRefGoogle Scholar
Jacquet, A., Haumont, M., Massaer, M., Daminet, V., Garcia, L., Mazzu, P., Jacobs, P. and Bollen, A. ( 2000). Biochemical and immunological characterisation of a recombinant precursor form of the house dust mite allergen Der p 1 produced by Drosophila cells. Clinical and Experimental Allergy 30, 677684.CrossRefGoogle Scholar
John, R. J., Rusznak, C., Ramjee, M., Lamont, A. G., Abrahamson, M. and Hewitt, E. L. ( 2000). Functional effects of the inhibition of the cysteine protease activity of the major house dust mite allergen Der p 1 by a novel peptide-based inhibitor. Clinical and Experimental Allergy 30, 784793.CrossRefGoogle Scholar
Kent, N. A., Hill, M. R., Keen, J. N., Holland, P. W. H. and Hart, B. J. ( 1992). Molecular characterization of group I allergen Eurm 1 from house dust mite Euroglyphus maynei. International Archives of Allergy and Immunology 99, 150152.CrossRefGoogle Scholar
Kenyon, F. and Knox, D. ( 2002). The proteinases of Psoroptes ovis, the sheep scab mite – their diversity and substrate specificity. Veterinary Parasitology 105, 317325.CrossRefGoogle Scholar
Kenyon, F., Welsh, M., Parkinson, J., Whitton, C., Blaxter, M. L. and Knox, D. P. ( 2003). Expressed sequence tag survey of gene expression in the scab mite Psoroptes ovis – allergens, proteases and free-radical scavengers. Parasitology 126, 451460.CrossRefGoogle Scholar
Lee, A. J., Machell, J., van den Broek, A. H. M., Nisbet, A. J., Miller, H. R. P., Isaac, R. E. and Huntley, J. F. ( 2002). Identification of an antigen from the sheep scab mite, Psoroptes ovis, homologous with house dust mite group I allergens. Parasite Immunology 24, 413422.CrossRefGoogle Scholar
Loukas, A., Bethony, J. M., Williamson, A. L., Goud, G. N., Mendez, S., Zhan, B., Hawdon, J. M., Bottazzi, M. E., Brindley, P. J. and Hotez, P. J. ( 2004). Vaccination of dogs with a recombinant cysteine protease from the intestine of canine hookworms diminishes the fecundity and growth of worms. Journal of Infectious Diseases 189, 19521961.CrossRefGoogle Scholar
Nisbet, A. J. and Billingsley, P. F. ( 2000). A comparative survey of the hydrolytic enzymes of parasitic and free-living mites. International Journal for Parasitology 30, 1928.CrossRefGoogle Scholar
Nisbet, A. J. and Huntley, J. F. ( 2006). Progress and opportunities in the development of vaccines against mites, fleas and myiasis-causing flies of veterinary importance. Parasite Immunology 28, 165172.CrossRefGoogle Scholar
Nisbet, A. J., Huntley, J. F., MacKellar, A., Sparks, N. and McDevitt, R. ( 2006). A house dust mite allergen homologue from poultry red mite Dermanyssus gallinae (De Geer). Parasite Immunology 28, 401405. doi:10.1111/j.1365-3024.2006.00862.xCrossRefGoogle Scholar
Pernas, M., Sánchez-Monge, R., Gómez, L. and Salcedo, G. ( 1998). A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests. Plant Molecular Biology 38, 12351242.CrossRefGoogle Scholar
Pettit, D., Smith, W. D., Richardson, J. and Munn, E. A. ( 2000). Localisation and characterisation of ovine immunoglobulin within the sheep scab mite, Psoroptes ovis. Veterinary Parasitology 89, 231239.CrossRefGoogle Scholar
Redmond, D. L. and Knox, D. P. ( 2004). Protection studies in sheep using affinity-purified and recombinant cysteine proteinases of adult Haemonchus contortus. Vaccine 22, 42524261.CrossRefGoogle Scholar
Redmond, D. L. and Knox, D. P. ( 2006). Further protection studies using recombinant forms of Haemonchus contortus cysteine proteinases. Parasite Immunology 28, 213219.CrossRefGoogle Scholar
Rees, J. A., Carter, J., Sibley, P. and Merrett, T. G. ( 1992). Localisation of the allergen Der p 1 in the gut of the house dust mite Dermatophagoides pteronyssinus by ImmuStain. International Archives of Allergy and Applied Immunology 94, 365367.Google Scholar
Sánchez-Ramos, I., Hernández, C. A., Castañera, P. and Ortego, F. ( 2004). Proteolytic activities in body and faecal extracts of the storage mite, Acarus farris. Medical and Veterinary Entomology 18, 378386.CrossRefGoogle Scholar
Sasaki, T., Kikuchi, T., Yumoto, N., Yoshimura, N. and Murachi, T. ( 1984). Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. Journal of Biological Chemistry 259, 1248912494.Google Scholar
Takai, T., Mineki, R., Nakazawa, T., Takaoka, M., Yasueda, H., Murayama, K., Okumura, K. and Ogawa, H. ( 2002). Maturation of the activities of recombinant mite allergens Der p 1 and Der f 1, and its implication in the blockade of proteolytic activity. FEBS Letters 531, 265272.CrossRefGoogle Scholar
van den Broek, A. H. and Huntley, J. F. ( 2003). Sheep scab: the disease pathogenesis and control. Journal of Comparative Pathology 128, 7991.CrossRefGoogle Scholar
van den Broek, A. H., Huntley, J. F., Machell, J., Taylor, M., Bates, P., Groves, B. and Miller, H. R. P. ( 2000). Cutaneous and systemic responses during primary and challenge infestations of sheep with the sheep scab mite, Psoroptes ovis. Parasite Immunology 22, 407414.CrossRefGoogle Scholar
van den Broek, A. H., Huntley, J. F., Machell, J., Taylor, M. and Miller, H. R. P. ( 2003). Temporal pattern of isotype-specific antibody responses in primary and challenge infestations of sheep with Psoroptes ovis – the sheep scab mite. Veterinary Parasitology 111, 217230.CrossRefGoogle Scholar
van Oort, E., de Heer, P. G., van Leeuwen, W. A., Derksen, N. I., Muller, M., Huveneers, S., Aalberse, R. C. and van Ree, R. ( 2002). Maturation of Pichia pastoris-derived recombinant pro-Der p 1 induced by deglycosylation and by the natural cysteine protease Der p 1 from house dust mite. European Journal of Biochemistry 269, 671679.CrossRefGoogle Scholar
Yasuhara, T., Takai, T., Yuuki, T., Okudaira, H. and Okumura, Y. ( 2001). Biologically active recombinant forms of a major house dust mite group 1 allergen Der f 1 with full activities of both cysteine protease and IgE binding. Clinical and Experimental Allergy 31, 116124.CrossRefGoogle Scholar