Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-26T10:15:36.848Z Has data issue: false hasContentIssue false

Delta-aminolevulinate dehydratase activity in red blood cells of rats infected with Trypanosoma evansi

Published online by Cambridge University Press:  22 August 2011

RAQUELI T. FRANÇA*
Affiliation:
Department of Small Animal, Federal University of Santa Maria, Brazil
ALEKSANDRO S. DA SILVA
Affiliation:
Department of Microbiology and Parasitology, Federal University of Santa Maria, Brazil
PATRÍCIA WOLKMER
Affiliation:
Department of Small Animal, Federal University of Santa Maria, Brazil
VITOR A. OLIVEIRA
Affiliation:
Department of Chemistry, Federal University of Santa Maria, Brazil
MARIA E. PEREIRA
Affiliation:
Department of Chemistry, Federal University of Santa Maria, Brazil
MARTA L. R. LEAL
Affiliation:
Department of Large Animals, Federal University of Santa Maria, Brazil
CÁSSIA B. SILVA
Affiliation:
Department of Small Animal, Federal University of Santa Maria, Brazil
MATHEUS A. G. NUNES
Affiliation:
Department of Chemistry, Federal University of Santa Maria, Brazil
VALDERI L. DRESSLER
Affiliation:
Department of Chemistry, Federal University of Santa Maria, Brazil
CINTHIA M. MAZZANTI
Affiliation:
Department of Small Animal, Federal University of Santa Maria, Brazil
SILVIA G. MONTEIRO
Affiliation:
Department of Microbiology and Parasitology, Federal University of Santa Maria, Brazil
SONIA T. A. LOPES
Affiliation:
Department of Small Animal, Federal University of Santa Maria, Brazil
*
*Corresponding author: Departamento de Pequenos Animais, Universidade Federal de Santa Maria, Camobi – 97, Hospital Veterinário, Sala 103. 97105-900, Santa Maria – RS, Brasil. Tel: and Fax: +55 55 32208814. E-mail: raquelifranca@yahoo.com.br

Summary

The aim of this study was to evaluate the activity of delta-aminolevulinate dehydratase (δ-ALA-D) in red blood cells of rats infected with Trypanosoma evansi and establish its association with haematocrit, serum levels of iron and zinc and lipid peroxidation. Thirty-six male rats (Wistar) were divided into 2 groups with 18 animals each. Group A was non-infected while Group B was intraperitoneally infected, receiving 7·5×106 trypomastigotes per animal. Each group was divided into 3 subgroups of 6 rats and blood was collected during different periods post-infection (p.i.) as follows: day 5 (A1 and B1), day 15 (A2 and B2) and day 30 PI (A3 and B3). Blood samples were collected by cardiac puncture to estimate red blood cell parameters (RBC), δ-ALA-D activity and serum levels of iron, zinc and thiobarbituric acid reactive substances (TBARS). Rats in group B showed a significant (P<0·05) reduction of RBC count, haemoglobin concentration and haematocrit at days 5 and 15 p.i. The activity of δ-ALA-D in blood was significantly (P<0·001) increased at days 15 and 30 p.i. δ-ALA-D activity in blood had a significant (P<0·05) negative correlation with haematocrit (r=−0·61) and haemoglobin (r=−0·70) at day 15 p.i. There was a significant (P<0·05) decrease in serum iron and zinc levels and an increase in TBARS levels (P<0·05) during infection. The δ-ALA-D activity in blood was negatively correlated with the levels of iron (r=−0·68) and zinc (r=−0·57) on day 30 p.i. It was concluded that the increased activity of δ-ALA-D in blood might have occurred in response to the anaemia in remission as heme synthesis was enhanced.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aisen, P., Enns, C. and Wessling-Resnick, M. (2001). Chemistry and biology of eukaryotic iron metabolism. The International Journal of Biochemistry & Cell Biology 33, 940959.CrossRefGoogle ScholarPubMed
Aquino, L. P. C. T., Machado, R. Z., Alessi, A. C., Marques, L. C., Castro, M. B. and Malheiros, E. B. (1999). Clinical, parasitological and immunological aspects of experimental infection with Trypanosoma evansi in dogs. Memórias do Instituto Osvaldo Cruz 94, 255260.CrossRefGoogle ScholarPubMed
Bevan, D. R., Bodlaender, P. and Shemin, D. (1980). Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity. The Journal of Biological Chemistry 255, 20302035.CrossRefGoogle ScholarPubMed
Block, C., Lohmann, R. D. and Beyersmann, D. (1990). Probing of active site residues of the zinc enzyme 5 – aminolevulinate dehydratase by spin and fluorescence labels. Biological Chemistry Hoppe-Seyler 371, 11451152.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 218254.CrossRefGoogle Scholar
Dargie, J. D., Murray, P. K., Murray, M., Grimshaw, W. T. R. and Mcintyre, W. I. M. (1979). Bovine trypanosomiasis: the red kinetics of N'dama and zebu cattle infected with Trypanosoma congolense. Parasitology 78, 271286.CrossRefGoogle Scholar
Da Silva, A. S., Andrade Neto, O. A. S., Costa, M. M., Wolkmer, P., Mazzantti, C. M., Santurio, J. M., Lopes, S. T. A., Monteiro, S. G. (2010). Tripanossomose em equinos na região sul do Brasil. Acta Scientiae Veterinariae 38, 113120.CrossRefGoogle Scholar
Da Silva, A. S., Costa, M. M., Wolkmer, P., Zanette, R. A., Faccio, L., Gressler, L. T., Dorneles, T. E. A., Santurio, J. M., Lopes, S. T. A. and Monteiro, S. G. (2009 c). Trypanosoma evansi: Hematologic changes in experimentally infected cats. Experimental Parasitology 123, 3134.CrossRefGoogle ScholarPubMed
Da Silva, A. S., Doyle, R. L. and Monteiro, S. G. (2006). Método de contenção e confecção de esfregaço sanguíneo para pesquisa de hemoparasitas em ratos em camundongos. Faculdade de Zootecnia, Veterinária e Agronomia 13, 153157.Google Scholar
Da Silva, A. S., Hoehne, L., Tonin, A. A., Zanette, R. A., Wolkmer, P., Costa, M. M., Moraes, D. P., Flores, É. M. M., Santurio, J. M., Lopes, S. T. A. and Monteiro, S. G. (2009 a). Trypanosoma evansi: Levels of copper, iron and zinc in the bloodstream of infected cats. Experimental Parasitology 123, 3538.CrossRefGoogle ScholarPubMed
Da Silva, A. S., Monteiro, S. G., Gonçalves, J. F., Spanevello, R., Oliveira, C. B., Costa, M. M., Jaques, J. A., Schetinger, M. R. C., Mazzanti, C. M. and Lopes, S. T. A. (2011). Trypanosoma evansi: Immune response and acetylcholinesterase activity in lymphocytes from infected rats. Experimental Parasitology 127, 475480.CrossRefGoogle ScholarPubMed
Da Silva, A. S., Zanette, R. A., Paim, F. C., Wolkmer, P., Costa, M. M., Santurio, J. M., Lopes, S. T. A. and Monteiro, S. G. (2009 b). Lipid peroxidation in cats experimentally infected with Trypanosoma evansi. Parasitology Research 106, 157161.CrossRefGoogle ScholarPubMed
Feldman, B. V., Zinkl, J. G. and Jain, N. C. (2000). Schalm's Veterinary Hematology. Lippincott Williams & Wilkins, Philadelphia, PA, USA.Google Scholar
Flores, E. M. M., Saidelles, A. P. F., Barin, J. S., Mortari, S. R. and Martins, A. F. (2001). Hair sample decomposition using polypropylene vials for determination of arsenic by hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 16, 14191423.CrossRefGoogle Scholar
Folmer, V., Soares, J. C., Gabriel, D. and Rocha, J. B. T. (2004). A high fat diet inhibits delta-aminolevulinate dehydratase and increases lipid peroxidation in mice (Mus musculus). The Journal of Nutrition 133, 21652170.CrossRefGoogle Scholar
Fukuda, H., Paredes, S. and Batlle, A. M. (1988). Active site histidine in pig liver aminolevulinic acid dehydratase modified by diethylpyrocarbonate and protected by Zn2+ ions. Comparative Biochemistry and Physiology 91B, 285291.Google Scholar
Gonçalves, T. L., Erthal, F., Corte, C. L., Müller, L. G., Piovezan, C., Nogueira, C. W. and Rocha, B. T. (2005). Involvement of oxidative stress in the pre-malignant and malignant states of cervical cancer in women. Clinical Biochemistry 38, 10711075.CrossRefGoogle ScholarPubMed
Halliwell, B. and Chirico, S. (1993). Lipid peroxidation: its mechanism, measurement, and significance. The American Journal of Clinical Nutrition 57, 715725.CrossRefGoogle ScholarPubMed
Jaffe, E. K. (1995). Porphobilinogen synthase, the first source of heme's asymmetry. Journal of Bioenergetics and Biomembranes 27, 169179.CrossRefGoogle ScholarPubMed
Jentzsch, A. M., Bachmann, H., Furst, P. and Biesalski, H. (1996). Improved analysis of malondialdehyde in human body fluids. Free Radical Biology and Medicine 20, 251256.CrossRefGoogle ScholarPubMed
Joshi, P. P., Shegokar, V. R., Power, R. M., Herder, S., Katti, R., Salkar, H. R., Dani, V. S. and Bhargava, A. (2005). Human Trypanosomosis caused by Trypanosoma evansi in India: the first case report. American Journal of Tropical Medicine and Hygiene 73, 491495.CrossRefGoogle ScholarPubMed
Kubiak, G. V. L. and Molfi, A. (1954). Tripanosomíase equina (Mal das Cadeiras). Boletim n. 33. Instituto de Biolgia e Pesquisas Tecnológicas do Estado do Paraná Tip. João Haupt & Cia, Ltda, Curitiba, Brazil.Google Scholar
Lalonde, R. G. and Holbein, B. E. (1984). Role of iron in Trypanosoma cruzi infection of mice. The American Society for Clinical Investigation 73, 470476.CrossRefGoogle ScholarPubMed
Lassen, E. D. and Weiser, G. (2007). Tecnologia laboratorial em medicina veterinária. In Hematologia e Bioquimica Clínica Veterinária (ed. Thrall, M. A.), pp. 336. Roca, São Paulo, Brazil.Google Scholar
Levine, N. D. (1973). Protozoan Parasites of Domestic Animals and of Man. 2nd Edn.Burguess Publishing Company, Minneapolis, Minnesota, USA.Google Scholar
Matousek de Abel de la Cruz, A. J., Burguera, J. L., Burguera, M. and Anez, N. (1993). Changes in the total content of iron, copper, and zinc in serum, heart, liver, spleen, and skeletal muscle tissues of rats infected with Trypanosoma cruzi. Biological Trace Elements Research 37, 5170.CrossRefGoogle ScholarPubMed
Menezes, V. T., Queiroz, A. O., Gomes, M. A. M., Marques, M. A. P. and Jansen, A. M. (2004). Trypanosoma evansi in inbred and Swiss-Webster mice: distinct aspects of pathogenesis. Parasitology Research 94, 193200.CrossRefGoogle ScholarPubMed
Omer, O. H., Mousa, H. M. and Al-Wabel, N. (2007). Study on the antioxidant status of rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology 145, 142145.CrossRefGoogle Scholar
Pereira, B., Curi, R., Kokubun, E. and Bechara, E. J. H. (1992). 5-Aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise- trained rats. Journal of Applied Physiology 72, 226230.CrossRefGoogle ScholarPubMed
Prasad, A. S. (1993). Biochemistry of Zinc. Plenum Press, New York, USA.CrossRefGoogle Scholar
Ryter, S. W. and Tyrrell, R. M. (2000). The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radical Biology & Medicine 28, 289309.CrossRefGoogle ScholarPubMed
Sassa, S. (1982). Delta-aminolevulinic acid dehydratase assay. Enzyme 28, 133145.CrossRefGoogle ScholarPubMed
Schlesinger, L., Arevalo, M., Arredondo, S., Lonnerdal, B. and Stekel, A. (1993). Zinc supplementation impairs monocyte function. Acta Paediatrica 82, 734738.CrossRefGoogle ScholarPubMed
Seidl, A., Moraes, A. S. and Silva, R. A. M. S. (1998). A financial analysis of treatment strategies for Trypanosoma evansi in the Brazilian Pantanal. Preventive Veterinary Medicine 33, 219234.CrossRefGoogle ScholarPubMed
Shegokar, V. R., Powar, R. M., Joshi, P. P., Bhargava, A., Dani, V. S., Katti, R., Zare, V. R., Khanande, V. D., Jannin, J. and Truc, P. (2006). Short report: human trypanosomiasis caused by Trypanosoma evansi in a village in India: preliminary serologic survey of the local population. American Journal of Tropical Medicine and Hygiene 75, 869870.CrossRefGoogle Scholar
Silva, R. A. M. S., Herrera, H. M., Domingos, L. B. S., Ximenes, F. A. and Dávila, A. M. R. (1995). Pathogenesis of Trypanossoma evansi infection ind dogs and horses: hematological and clinical aspects. Ciência Rural 25, 223238.CrossRefGoogle Scholar
Silva, R. A. M. S., Seidl, A., Ramirez, L. and Dávila, A. M. R. (2002). Trypanosoma evansi e Trypanosoma vivax: biologia, diagnóstico e controle. Embrapa Pantanal, Corumbá, Mato Grosso, Brazil.Google Scholar
Walia, P. S., Kalra, S., Juyal, P. D. and Ahuja, S. P. (1996). Role of activity of Trypanosoma evansi in inducing anemia and immunomodulation in buffalo calves. Journal of Veterinary Parasitology 10, 19.Google Scholar
Wolkmer, P., da Silva, A. S., Traesel, C. K., Paim, F. C., Cargnelutti, J. F., Pagnoncelli, M., Picada, M. E., Monteiro, S. G. and Lopes, S. T. A. (2009). Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology 165, 4146.CrossRefGoogle ScholarPubMed
Wolkmer, P., Silva, A. S., Cargnelutti, J., Costa, M. M., Traesel, C. K., Lopes, S. T. A. and Monteiro, S. G. (2007). Resposta eritropoética de ratos em diferentes graus de parasitemia por Trypanosoma evansi. Ciência Rural 37, 16821687.CrossRefGoogle Scholar