Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-23T16:00:00.645Z Has data issue: false hasContentIssue false

Cross-reactive surface antigens on three stages of Brugia malayi, B. pahangi and B. timori

Published online by Cambridge University Press:  06 April 2009

R. M. Maizels
Division of Parasitology, National Institute for Medical Research, London NW7 1AA
F. Partono
Department of Parasitology, University of Indonesia, Jakarta
Sri Oemijati
Department of Parasitology, University of Indonesia, Jakarta
D. A. Denham
London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
Bridget M. Ogilvie
Division of Parasitology, National Institute for Medical Research, London NW7 1AA


Surface antigens of three stages of three species of the filarial nematode genus Brugia have been analysed by radio-iodination and immunoprecipitation. These surface antigens have been shown to be characteristic for each stage by polyacrylamide gel electrophoresis. For example, infective larvae and adult worms have relatively complex patterns while microfilariae have few bands which are not found when other stages are radio-isotope labelled by the same technique. The surface antigens of Brugia malayi, B. timori and B. pahangi adult worms are all closely homologous, as are the surface antigens of infective larvae of the same three species, and of microfilariae of B. malayi and B. pahangi. Immunoprecipitation revealed that antibody raised in mice against one stage or species reacted with surface antigens from other stages and species. For example, sera raised against B. pahangi male adults reacted strongly with surface antigens from all three species. This cross-reactivity was dominant despite the apparent stage-specificity of the surface pattern seen on SDS-PAGE analysis. Moreover, in cross-immunization experiments, infective larvae were able to stimulate a secondary antibody response in mice previously primed with microfilarial surface antigens. The major microfilarial surface antigens (of mol. wt 65−70000 Daltons) were recognized by serum antibody from microfilariae-, infective larvae- or adult-infected animals. Thus, although the dominant antigens from each stage are of different molecular weight, cross-reactions with stage-specific antisera suggest that there must be shared epitopes on Brugia surface antigens from each stage. Such shared antigenic determinants dominate the immune response, although other evidence, including the differences in molecular weight, indicates the existence of stage-and species-specific components.

Research Article
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Ambroise-Thomas, P. (1974). Immunological diagnosis of human filariasis: present possibilities, difficulties and limitations. Acta Tropica 31, 108–28.Google ScholarPubMed
Ash, L. R. & Riley, J. M. (1970). Development of Brugia pahangi in the jird, Meriones unguiculatus, with notes on infections in other rodents. Journal of Parasitology 56, 962–8.CrossRefGoogle ScholarPubMed
Au, A. C. S. & Flockhart, H. A. (1982). Demonstration of antibodies to phosphoglucomutase of parasitic origin in Brugia pahangi-infected cats. Zeitschrift für Parasitenkunde 67, 237–43.CrossRefGoogle ScholarPubMed
Baschong, W., Tanner, M., Betschart, B., Rudin, W. & Weiss, N. (1982). Dipetalonema viteae: extraction and immunogenicity of cuticular antigens from female worms. Experimental Parasitology 53, 262–9.CrossRefGoogle ScholarPubMed
Dissanayake, S. & Ismail, M. M. (1980). Antigens of Setaria digitata: cross-reaction with surface antigens of Wuchereria bancrofti microfilariae and serum antibodies of W. bancrofti-infected subjects. Bulletin of the World Health Organization 58, 649–54.Google ScholarPubMed
Forsyth, K. P., Copeman, D. B., Anders, R. F. & Mitchell, G. F. (1981). The major radioiodinated cuticular antigens of Onchocerca gibsoni microfilariae are neither species nor onchocerca specific. Acta Tropica 38, 343–52.Google ScholarPubMed
Grove, D. I., Cabrera, B. D., Valeza, F. S., Guinto, R. S., Ash, L. R. & Warren, K. S. (1977). Sensitivity and specificity of skin reactivity to Brugia malayi and Dirofilaria immitis antigens in Bancroftian and Malayan filariasis in the Philippines. American Journal of Tropical Medicine and Hygiene 26, 220–9.CrossRefGoogle ScholarPubMed
Hedge, E. C. & Ridley, D. S. (1977). Immunofluorescent reactions with microfilariae: I. Diagnostic evaluation. Transactions of the Royal Society for Tropical Medicine and Hygiene 71, 304–7.CrossRefGoogle ScholarPubMed
Kaushal, N. A., Hussain, R., Nash, T. E. & Ottesen, E. A. (1982). Identification and characterization of excretory-secretory products of Brugia malayi adult filarial parasites. Journal of Immunology 129, 338–43.CrossRefGoogle ScholarPubMed
Kazura, J. W. & Grove, D. I. (1978). Stage-specific antibody-dependent eosinophil-mediated destruction of Trichinella spiralis. Nature, London 274, 588–9.CrossRefGoogle ScholarPubMed
Kazura, J. W. & Davis, R. S. (1982). Soluble Brugia malayi microfilarial antigens protect mice against challenge by an antibody-dependent mechanism. Journal of Immunology 128, 1792–6.CrossRefGoogle ScholarPubMed
Mackenzie, C. D., Preston, P. M. & Ogilvie, B. M. (1978). Immunological properties of the surface of nematodes. Nature, London 276, 826–8.CrossRefGoogle ScholarPubMed
Maizels, R. M., Phtlipp, M. & Ogilvie, B. M. (1982). Molecules on the surface of parasitic nematodes as probes of the immune response in infection. Immunological Reviews 61, 109–36.CrossRefGoogle ScholarPubMed
Maizels, R. M., Meghji, M. & Ogilvie, B. M. (1983 a). Restricted sets of parasite antigens from the surface of different stages and sexes of the nematode Nippostrongylus brasiliensis. Immunology 48, 107–21.Google Scholar
Maizels, R. M., Partono, F., Oemijati, S. & Ogilvie, B. M. (1983 b). Antigenic analysis of Brugia timori, a filarial nematode of man: initial characterisation by surface radioiodination and evaluation of diagnostic potential. Clinical and Experimental Immunology 51, 269–77.Google Scholar
Nelson, M., Nelson, D. S. & Zaman, V. (1971). Detection of antigens on filarial worms by means of immune adherence. Experientia 27, 191–2.CrossRefGoogle Scholar
Oliver-Gonzalez, J. & Morales, F. H. (1945). Common antigens among filarial and other nematode parasites of man. Journal of Infectious Diseases 77, 91–5.CrossRefGoogle Scholar
Parkhouse, R. M. E., Philipp, M.& Ogilvie, B. M. (1981). Characterisation of surface antigens of Trichinella spiralis infective larvae. Parasite Immunology 3, 339–52.CrossRefGoogle ScholarPubMed
Philipp, M., Parkhouse, R. M. E. & Ogilvie, B. M. (1980). Changing proteins on the surface of a parasitic nematode. Nature, London 287, 538–40.CrossRefGoogle ScholarPubMed
Philipp, M., Taylor, P. M., Parkhouse, R. M. E. & Ogilvie, B. M. (1981). Immune response to stage-specific surface antigens of the parasitic nematode Trichinella spiralis. Journal of Experimental Medicine 154, 210–15.CrossRefGoogle ScholarPubMed
Ponnudurai, T., Denham, D. A., Nelson, G. S. & Rogers, R. (1974). Studies with Brugia pahangi. 4. Antibodies against adult and microfilarial stages. Journal of Helminthology 48, 107–11.CrossRefGoogle ScholarPubMed
Ridley, D. S. & Hedge, E. C. (1977). Immunofluorescent reactions with microfilariae. 2. Bearing on host-parasite relations. Transactions of the Royal Society for Tropical Medicine and Hygiene 71, 522–5.CrossRefGoogle ScholarPubMed
Sasa, M. (1976). Human Filariasis. A Global Survey of Epidemiology and Control. Baltimore: University Park Press.Google Scholar
Singh, M., Kane, G. J., Yap, E. -H., Ho, B. -C., Mak, J. -W. & Kang, K. -L. (1979). Studies on human filariasis in Malaysia. Immunodiagnosis using indirect immunofluorescence. South East Asian Journal of Tropical Medicine and Public Health 10, 486–97.Google ScholarPubMed
Spencer, H. C., Collins, W. E., Stanfill, P. S., Huong, A. Y., Barber, A. M. & Contacos, P. C. (1981). Antibody response to heterologous and homologous antigens in Brugia malayi and B. pahangi-infected Mongolian jirds as measured by the enzyme-linked immunosorbent assay (ELISA). American Journal of Tropical Medicine and Hygiene 30, 358–63.CrossRefGoogle Scholar
Subrahmanyam, D., Chaudhury, S. & Jain, S. (1974). Immunological investigations on filariasis. Indian Journal of Bacteriology and Pathology 17, 135–41.Google ScholarPubMed
Thompson, J. P., Crandall, R. B., Crandall, C. A. & Neilson, J. T. (1981). Microfilaremia and antibody responses in CBA/H and CBA/N mice following injection of microfilariae of Brugia malayi. Journal of Parasitology 67, 728–30.CrossRefGoogle ScholarPubMed
Weiss, N. & Tanner, M. (1981). Immunogenicity of the surface of filarial larvae (Dipetalonema viteae). Transactions of the Royal Society for Tropical Medicine and Hygiene 75, 179–81.CrossRefGoogle ScholarPubMed
Weiss, N., Hussain, R. & Ottesen, E. A. (1982). IgE antibodies are more species-specific than IgG antibodies in human onchocerciasis and lymphatic filariasis. Immunology 45, 129–37.Google ScholarPubMed