Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-r8t2r Total loading time: 0.445 Render date: 2022-07-04T16:55:44.724Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Antigenicity, immunogenicity and protective efficacy of a conserved Leishmania hypothetical protein against visceral leishmaniasis

Published online by Cambridge University Press:  08 November 2017

Daniel S. Dias
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Vívian T. Martins
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Patrícia A. F. Ribeiro
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Fernanda F. Ramos
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Daniela P. Lage
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Grasiele S. V. Tavares
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Débora V. C. Mendonça
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Miguel A. Chávez-Fumagalli
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Jamil S. Oliveira
Affiliation:
Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Eduardo S. Silva
Affiliation:
Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
Dawidson A. Gomes
Affiliation:
Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Michele A. Rodrigues
Affiliation:
Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Mariana C. Duarte
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Alexsandro S. Galdino
Affiliation:
Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
Daniel Menezes-Souza
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Eduardo A. F. Coelho*
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
*
Author for correspondence: Professor Dr Eduardo A. F. Coelho, E-mail: eduardoferrazcoelho@yahoo.com.br

Abstract

In this study, a Leishmania hypothetical protein, LiHyS, was evaluated regarding its antigenicity, immunogenicity and protective efficacy against visceral leishmaniasis (VL). Regarding antigenicity, immunoblottings and an enzyme-linked immunosorbent assay using human and canine sera showed high sensitivity and specificity values for the recombinant protein (rLiHyS) in the diagnosis of VL. When evaluating the immunogenicity of LiHyS, which is possibly located in the parasite's flagellar pocket, proliferative assays using peripheral blood mononuclear cells from healthy subjects or VL patients showed a high proliferative index in both individuals, when compared to the results obtained using rA2 or unstimulated cultures. Later, rLiHyS/saponin was inoculated in BALB/c mice, which were then challenged with Leishmania infantum promastigotes. The vaccine induced an interferon-γ, interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor production, which was maintained after infection and which was associated with high nitrite and IgG2a antibody levels, as well as low IL-4 and IL-10 production. Significant reductions in the parasite load in liver, spleen, bone marrow and draining lymph nodes were found in these animals. In this context, the present study shows that the rLiHyS has the capacity to be evaluated as a diagnostic marker or vaccine candidate against VL.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abanadés, DR, Arruda, LV, Arruda, ES, Pinto, JR, Palma, MS, Aquino, D, Caldas, AJ, Soto, M, Barral, A and Barral-Netto, M (2012) Immunodominant antigens of Leishmania chagasi associated with protection against human visceral leishmaniasis. PLoS Neglected Tropical Diseases 6, e1687.CrossRefGoogle ScholarPubMed
Achour, YB, Chenik, M, Louzir, H and Dellagi, K (2002) Identification of a disulfide isomerase protein of Leishmania major as a putative virulence factor. Infection and Immunity 70, 35763585.CrossRefGoogle ScholarPubMed
Agallou, M, Smirlis, D, Soteriadou, KP and Karagouni, E (2012) Vaccination with Leishmania histone H1-pulsed dendritic cells confers protection in murine visceral leishmaniasis. Vaccine 30, 50865093.CrossRefGoogle ScholarPubMed
Agallou, M, Athanasiou, E, Samiotaki, M, Panayotou, G and Karagouni, E (2016) Identification of immunoreactive Leishmania infantum protein antigens to asymptomatic dog sera through combined immunoproteomics and bioinformatics analysis. PLoS ONE 11, e0149894.CrossRefGoogle ScholarPubMed
Agallou, M, Margaroni, M, Athanasiou, E, Toubanaki, DK, Kontonikola, K, Karidi, K, Kammona, O, Kiparissides, C and Karagouni, E (2017) Identification of BALB/c immune markers correlated with a partial protection to Leishmania infantum after vaccination with a rationally designed multi-epitope cysteine protease a peptide-based nanovaccine. PLoS Neglected Tropical Diseases 11, e0005311.CrossRefGoogle ScholarPubMed
Alcolea, PJ, Tuñón, GI, Alonso, A, García-Tabares, F, Ciordia, S, Mena, MC, Campos, RN, Almeida, RP and Larraga, V (2016) Differential protein abundance in promastigotes of nitric oxide-sensitive and resistant Leishmania chagasi strains. Proteomics Clinical Applications 10, 11321146.CrossRefGoogle ScholarPubMed
Aronson, NE (2017) Addressing a clinical challenge: guidelines for the diagnosis and treatment of leishmaniasis. BMC Medicine 15, 76.CrossRefGoogle ScholarPubMed
Bayih, AG, Daifalla, NS and Gedamu, L (2014) DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+ T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant. PLoS Neglected Tropical Diseases 8, e3391.CrossRefGoogle ScholarPubMed
Bhowmick, S, Ravindran, R and Ali, N (2007) Leishmanial antigens in liposomes promote protective immunity and provide immunotherapy against visceral leishmaniasis via polarized Th1 response. Vaccine 25, 65446556.CrossRefGoogle ScholarPubMed
Chamakh-Ayari, R, Bras-Gonçalves, R, Bahi-Jaber, N, Petitdidier, E, Markikou-Ouni, W, Aoun, K, Moreno, J, Carrillo, E, Salotra, P, Kaushal, H, Negi, NS, Arevalo, J, Falconi-Agapito, F, Privat, A, Cruz, M, Pagniez, J, Papierok, GM, Rhouma, FB, Torres, P, Lemesre, JL, Chenik, M and Meddeb-Garnaoui, A (2014) In vitro evaluation of a soluble Leishmania promastigote surface antigen as a potential vaccine candidate against human leishmaniasis. PLoS ONE 9, e92708.CrossRefGoogle ScholarPubMed
Coelho, VT, Oliveira, JS, Valadares, DG, Chávez-Fumagalli, MA, Duarte, MC, Lage, PS, Soto, M, Santoro, MM, Tavares, CA, Fernandes, AP and Coelho, EA (2012) Identification of proteins in promastigote and amastigote-like Leishmania using an immunoproteomic approach. PLoS Neglected Tropical Diseases 6, e1430.CrossRefGoogle ScholarPubMed
Costa, LE, Salles, BCS, Santos, TTO, Ramos, FF, Lima, MP, Lima, MIS, Portela, ASB, Chávez-Fumagalli, MA, Duarte, MC, Menezes-Souza, D, Machado-de-Ávila, RA, Silveira, JAG, Magalhães-Soares, DF, Goulart, LR and Coelho, EAF (2017) Antigenicity of phage clones and their synthetic peptides for the serodiagnosis of canine and human visceral leishmaniasis. Microbial Pathogenesis 110, 1422.CrossRefGoogle ScholarPubMed
Costa, MM, Andrade, HM, Bartholomeu, DC, Freitas, LM, Pires, SF, Chapeaurouge, AD, Perales, J, Ferreira, AT, Giusta, MS, Melo, MN and Gazzinelli, RT (2011) Analysis of Leishmania chagasi by 2-D difference gel electrophoresis (2-D DIGE) and immunoproteomic: identification of novel candidate antigens for diagnostic tests and vaccine. Journal of Proteome Research 10, 21722184.CrossRefGoogle ScholarPubMed
Duarte, MC, Lage, DP, Martins, VT, Costa, LE, Lage, LM, Carvalho, AM, Ludolf, F, Santos, TT, Roatt, BM, Menezes-Souza, D, Fernandes, AP, Tavares, CA and Coelho, EA (2016) A vaccine combining two Leishmania braziliensis proteins offers heterologous protection against Leishmania infantum infection. Molecular Immunology 76, 7079.CrossRefGoogle ScholarPubMed
Duarte, MC, Lage, DP, Martins, VT, Costa, LE, Carvalho, AM, Ludolf, F, Santos, TT, Vale, DL, Roatt, BM, Menezes-Souza, D, Fernandes, AP, Tavares, CA and Coelho, EA (2017) A vaccine composed of a hypothetical protein and the eukaryotic initiation factor 5a from Leishmania braziliensis cross-protection against Leishmania amazonensis infection. Immunobiology 222, 251260.CrossRefGoogle ScholarPubMed
Dupé, A, Dumas, C and Papadopoulou, B (2015) Differential subcellular localization of Leishmania alba-domain proteins throughout the parasite development. PLoS ONE 10, e0137243.CrossRefGoogle ScholarPubMed
Eskandari, F, Talesh, GA, Parooie, M, Jaafari, MR, Khamesipour, A, Saberi, Z, Abbasi, A and Badiee, A (2014) Immunoliposomes containing soluble Leishmania antigens (SLA) as a novel antigen delivery system in murine model of leishmaniasis. Experimental Parasitology 146, 7886.CrossRefGoogle ScholarPubMed
Faria, JA, Andrade, C, Goes, AM, Rodrigues, MA and Gomes, DA (2016) Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation. Biochemical and Biophysical Research Communication 478, 3945.CrossRefGoogle ScholarPubMed
Fernandes, AP, Coelho, EAF, Machado-Coelho, GLL, Grimaldi, G Jr. and Gazzinelli, RT (2012) Making an anti-amastigote vaccine for visceral leishmaniasis: rational, update and perspectives. Current Opinion in Microbiology 15, 110.CrossRefGoogle Scholar
Forestier, CL, Gao, Q and Boons, GJ (2015) Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate? Frontiers in Cellular and Infection Microbiology 4, 193.CrossRefGoogle ScholarPubMed
Gadisa, E, Custodio, E, Cañavate, C, Sordo, L, Abebe, Z, Nieto, J, Chicharro, C, Aseffa, A, Yamuah, L, Engers, H, Moreno, J and Cruz, I (2012) Usefulness of the rK39-immunochromatographic test, direct agglutination test, and leishmanin skin test for detecting asymptomatic Leishmania infection in children in a new visceral leishmaniasis focus in Amhara State, Ethiopia. The American Journal of Tropical Medicine and Hygiene 86, 792798.CrossRefGoogle Scholar
Ghosh, P, Hasnain, MG, Ghosh, D, Hossain, F, Baker, J, Boelaert, M, Rijal, S and Mondal, D (2015) A comparative evaluation of the performance of commercially available rapid immunochromatographic tests for the diagnosis of visceral leishmaniasis in Bangladesh. Parasites & Vectors 8, 331.CrossRefGoogle Scholar
Goto, Y, Bhatia, A, Raman, VS, Liang, H, Mohamath, R, Picone, AF, Vidal, SE, Vedvick, TS, Howard, RF and Reed, SG (2011) KSAC, the first defined polyprotein vaccine candidate for visceral leishmaniasis. Clinical and Vaccine Immunology 18, 11181124.CrossRefGoogle ScholarPubMed
Green, LC, Wagner, DA, Glogowski, J, Skipper, PL, Wishnok, JS and Tannenbaum, SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry 126, 131138.CrossRefGoogle Scholar
Gupta, R, Kumar, V, Kushawaha, PK, Tripathi, CP, Joshi, S, Sahasrabuddhe, AA, Mitra, K, Sundar, S, Siddiqi, MI and Dube, A (2014) Characterization of glycolytic enzymes – rAldolase and rEnolase of Leishmania donovani, identified as Th1 stimulatory proteins, for their immunogenicity and immunoprophylactic efficacies against experimental visceral leishmaniasis. PLoS ONE 9, e86073.CrossRefGoogle ScholarPubMed
Heung, LJ, Luberto, C and Del Poeta, M (2006) Role of sphingolipids in microbial pathogenesis. Infection and Immunity 74, 2839.CrossRefGoogle ScholarPubMed
Iborra, S, Parody, N, Abanades, DR, Bonay, P, Prates, D, Novais, FO, Barral-Netto, M, Alonso, C and Soto, M (2008) Vaccination with the Leishmania major ribosomal proteins plus CpG oligodeoxynucleotides induces protection against experimental cutaneous leishmaniasis in mice. Microbes and Infection 10, 11331141.CrossRefGoogle ScholarPubMed
Joshi, J and Kaur, S (2014) Studies on the protective efficacy of second-generation vaccine along with standard antileishmanial drug in Leishmania donovani infected BALB/c mice. Parasitology 141, 554562.CrossRefGoogle ScholarPubMed
Kumari, S, Kumar, A, Samant, M, Sundar, S, Singh, N and Dube, A (2008) Proteomic approaches for discovery of new targets for vaccine and therapeutics against visceral leishmaniasis. Proteomics Clinical Applications 2, 372386.CrossRefGoogle ScholarPubMed
Martins, VT, Lage, DP, Duarte, MC, Costa, LE, Garde, E, Rodrigues, MR, Chávez-Fumagalli, MA, Menezes-Souza, D, Roatt, BM, Tavares, CA, Soto, M and Coelho, EA (2016) A new Leishmania-specific hypothetical protein, LiHyT, used as a vaccine antigen against visceral leishmaniasis. Acta Tropica 154, 7381.CrossRefGoogle ScholarPubMed
Martins, VT, Duarte, MC, Lage, DP, Costa, LE, Carvalho, AM, Mendes, TA, Roatt, BM, Menezes-Souza, D, Soto, M and Coelho, EA (2017) A recombinant chimeric protein composed of human and mice-specific CD4+ and CD8+ T-cell epitopes protects against visceral leishmaniasis. Parasite Immunology 39, e12359.CrossRefGoogle ScholarPubMed
Matlashewski, G, Das, VN, Pandey, K, Singh, D, Das, S, Ghosh, AK, Pandey, RN and Das, P (2013) Diagnosis of visceral leishmaniasis in Bihar India: comparison of the rK39 rapid diagnostic test on whole blood versus serum. PLoS Neglected Tropical Diseases 7, e2233.CrossRefGoogle ScholarPubMed
Miahipour, A, Haji-Fatahaliha, M, Keshavarz, H, Gharavi, MJ, Mohamadi, H, Babaloo, Z, Rafati, S, Younesi, V, Hosseini, M and Yousefi, M (2016) T helper 1 (Th1), Th2, and Th17 responses to Leishmania major lipophosphoglycan 3. Immunological Investigations 45, 692702.CrossRefGoogle Scholar
Mizbani, A, Taheri, T, Zahedifard, F, Taslimi, Y, Azizi, H, Azadmanesh, K, Papadopoulou, B and Rafati, S (2009) Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine 28, 5362.CrossRefGoogle ScholarPubMed
Mohamed-Ahmed, AH, Brocchini, S and Croft, SL (2012) Recent advances in development of amphotericin B formulations for the treatment of visceral leishmaniasis. Current Opinion in Infectious Diseases 25, 695702.CrossRefGoogle ScholarPubMed
Mohammadiha, A, Mohebali, M, Haghighi, A, Mahdian, R, Abadi, AR, Zarei, Z, Yeganeh, F, Kazemi, B, Taghipour, N and Akhoundi, B (2013) Comparison of real-time PCR and conventional PCR with two DNA targets for detection of Leishmania (Leishmania) infantum infection in human and dog blood samples. Experimental Parasitology 133, 8994.CrossRefGoogle ScholarPubMed
Peruhype-Magalhães, V, Martins-Filho, OA, Prata, A, Silva, LA, Rabello, A, Teixeira-Carvalho, A, Figueiredo, RM, Guimarães-Carvalho, SF, Ferrari, TC and Correa-Oliveira, R (2005) Immune response in human visceral leishmaniasis: analysis of the correlation between innate immunity cytokine profile and disease outcome. Scandinavian Journal of Immunology 62, 487495.CrossRefGoogle ScholarPubMed
Petitdidier, E, Pagniez, J, Papierok, G, Vincendeau, P, Lemesre, JL and Bras-Gonçalves, R (2016) Recombinant forms of Leishmania amazonensis excreted/secreted promastigote surface antigen (PSA) induce protective immune responses in dogs. PLoS Neglected Tropical Diseases 10, e0004614.CrossRefGoogle ScholarPubMed
Rafati, S, Kariminia, A, Seyde-Eslami, S, Narimani, M, Taheri, T and Lebbatard, M (2002) Recombinant cysteine proteinases-based vaccines against Leishmania major in BALB/c mice: the partial protection relies on interferon-gamma producing CD8(+) T lymphocyte activation. Vaccine 20, 24392447.CrossRefGoogle ScholarPubMed
Reed, SG, Coler, RN, Mondal, D, Kamhawi, S and Valenzuela, JG (2016) Leishmania vaccine development: exploiting the host-vector-parasite interface. Expert Review of Vaccines 15, 8190.CrossRefGoogle ScholarPubMed
Rodrigues, V, Cordeiro-da-Silva, A, Laforge, M, Silvestre, R and Estaquier, J (2016) Regulation of immunity during visceral Leishmania infection. Parasites & Vectors 9, 118.CrossRefGoogle ScholarPubMed
Saldarriaga, OA, Travi, BL, Park, W, Perez, LE and Melby, PC (2006) Immunogenicity of a multicomponent DNA vaccine against visceral leishmaniasis in dogs. Vaccine 24, 19281940.CrossRefGoogle ScholarPubMed
Saljoughian, N, Taheri, T, Zahedifard, F, Taslimi, Y, Doustdari, F, Bolhassani, A, Doroud, D, Azizi, H, Heidari, K, Vasei, M, Namvar, AN, Papadopoulou, B and Rafati, S (2013) Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis. PLoS Neglected Tropical Diseases 7, 115.CrossRefGoogle ScholarPubMed
Singh, OP, Stober, CB, Singh, AK, Blackwell, JM and Sundar, S (2012) Cytokine responses to novel antigens in an Indian population living in an area endemic for visceral leishmaniasis. PLoS Neglected Tropical Diseases 6, e1874.CrossRefGoogle Scholar
Srivastava, A, Singh, N, Mishra, M, Kumar, V, Gour, JK, Bajpai, S, Singh, S, Pandey, HP and Singh, RK (2012) Identification of TLR inducing Th1-responsive Leishmania donovani amastigote-specific antigens. Molecular and Cellular Biochemistry 359, 359368.CrossRefGoogle ScholarPubMed
Stockdale, L and Newton, R (2013) A review of preventative methods against human leishmaniasis infection. PLoS Neglected Tropical Diseases 7, e2278.CrossRefGoogle ScholarPubMed
Sundar, S and Chakravarty, J (2013) Leishmaniasis: an update of current pharmacotherapy. Expert Opinion on Pharmacotherapy 14, 5363.CrossRefGoogle ScholarPubMed
Sundar, S and Singh, B (2014) Identifying vaccine targets for anti-leishmanial vaccine development. Expert Review of Vaccines 13, 489505.CrossRefGoogle ScholarPubMed
Thakur, A, Kaur, H and Kaur, S (2015) Studies on the protective efficacy of freeze thawed promastigote antigen of Leishmania donovani along with various adjuvants against visceral leishmaniasis infection in mice. Immunobiology 220, 10311038.CrossRefGoogle ScholarPubMed
Vieira, PM, Francisco, AF, Machado, EM, Nogueira, NC, Fonseca, KS, Reis, AB, Teixeira-Carvalho, A, Martins-Filho, OA, Tafuri, WL and Carneiro, CM (2012) Different infective forms trigger distinct immune response in experimental Chagas disease. PLoS ONE 7, e32912.CrossRefGoogle ScholarPubMed
Yao, C, Li, Y, Donelson, JE and Wilson, ME (2010) Proteomic examination of Leishmania chagasi plasma membrane proteins: contrast between avirulent and virulent (metacyclic) parasite forms. Proteomics Clinical Applications 4, 416.CrossRefGoogle ScholarPubMed
Zadeh-Vakili, A, Taheri, T, Taslimi, Y, Doustdari, F, Salmanian, AH and Rafati, S (2004) Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis. Vaccine 22, 19301940.CrossRefGoogle Scholar
Zhang, WW, Charest, H, Ghedin, E and Matlashewski, G (1996) Identification and overexpression of the A2 amastigote-specific protein in Leishmania donovani. Molecular and Biochemical Parasitology 78, 7990.CrossRefGoogle ScholarPubMed
Werbovetz, KA, Brendle, JJ and Sackett, DL (1999) Purification, characterization, and drug susceptibility of tubulin from Leishmania. Molecular and Biochemical Parasitology 98, 5365.CrossRefGoogle ScholarPubMed
Supplementary material: File

Dias et al supplementary material 1

Supplementary Figure

Download Dias et al supplementary material 1(File)
File 358 KB
10
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Antigenicity, immunogenicity and protective efficacy of a conserved Leishmania hypothetical protein against visceral leishmaniasis
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Antigenicity, immunogenicity and protective efficacy of a conserved Leishmania hypothetical protein against visceral leishmaniasis
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Antigenicity, immunogenicity and protective efficacy of a conserved Leishmania hypothetical protein against visceral leishmaniasis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *