Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-23T06:07:46.132Z Has data issue: false hasContentIssue false

Olive oil and wine as source of multi-target agents in the prevention of Alzheimer disease

Published online by Cambridge University Press:  13 December 2021

Paula Silva*
Affiliation:
Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal iNOVA Media Lab, ICNOVA, Universidade Nova de Lisboa, Lisbon, Portugal
María Rodríguez-Pérez
Affiliation:
Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha; Avenue Carlos III s/n, 45071 Toledo, Spain
Óscar Gómez-Torres
Affiliation:
Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha; Avenue Carlos III s/n, 45071 Toledo, Spain
Emma Burgos-Ramos*
Affiliation:
Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha; Avenue Carlos III s/n, 45071 Toledo, Spain
*
*Corresponding authors: Paula Silva, email: psilva@icbas.up.pt; Emma Burgos-Ramos, email: emma.burgos@uclm.es
*Corresponding authors: Paula Silva, email: psilva@icbas.up.pt; Emma Burgos-Ramos, email: emma.burgos@uclm.es

Abstract

Olive oil and wine are consumed daily worldwide, and they constitute the fundamental pillars of the healthy Mediterranean diet. Polyphenolic compounds, naturally present in both olive oil and wine, are responsible for their beneficial properties. Current studies have shown the neuroprotective effects of polyphenols independently of their well-known antioxidant action. In this work, we have focused on reviewing the protective effect of polyphenols from extra virgin olive oil and wine in Alzheimer´s disease (AD), to emphasise that both foods could be a possible therapeutic tool. Beneficial effects have been described in β-aggregation, neurofibrillary tangles, autophagy and mitochondrial function, as well as in cerebral insulin resistance. Furthermore, to date, a harmful dose has not been described. Both pre-clinical and clinical works demonstrate that polyphenols act on neuropathological and cognitive disorders of AD, preventing or stopping the onset of this devastating disease. However, there are certain limitations in these studies, since it is very difficult to research diseases that lead to cognitive impairment. Although all the findings obtained are very encouraging, more studies should be carried out investigating the use of the polyphenols from olive oil and wine as therapeutic agents in the progression of AD. Therefore, more longitudinal studies in humans with a homogeneous cohort of patients are necessary to corroborate the efficacy of these nutraceuticals, as well as determine the most appropriate dose for this purpose.

Type
Review Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Román, GC, Jackson, RE, Reis, J, et al. (2019) Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol 175, 705723. https://doi.org/10.1016/j.neurol.2019.07.017.CrossRefGoogle ScholarPubMed
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the substantiation of a health claim related to polyphenols in olive and maintenance of normal blood HDL cholesterol concentrations (ID 1639, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. (2012);10:2848 14pp. doi: 10.2903/j.efsa.2012.2848.CrossRefGoogle Scholar
López-Huertas, E, Lozano-Sánchez, J & Segura-Carretero, A (2021) Olive oil varieties and ripening stages containing the antioxidants hydroxytyrosol and derivatives in compliance with EFSA health claim. Food Chem 342, 128291. doi: 10.1016/j.foodchem.2020.128291.CrossRefGoogle ScholarPubMed
Kouka, P, Tekos, F, Papoutsaki, Z, et al. (2020) Olive oil with high polyphenolic content induces both beneficial and harmful alterations on rat redox status depending on the tissue. Toxicol Rep 7, 421432. doi: 10.1016/j.toxrep.2020.02.007.CrossRefGoogle ScholarPubMed
Auñon-Calles, D, Giordano, E, Bohnenberger, S, et al. (2013a) Hydroxytyrosol is not genotoxic in vitro . Pharmacol Res 74, 8793. doi: 10.1016/j.phrs.2013.06.002.CrossRefGoogle Scholar
Auñon-Calles, D, Canut, L & Visioli, F (2013b) Toxicological evaluation of pure hydroxytyrosol. Food Chem Toxicol 55, 498504. doi: 10.1016/j.fct.2013.01.030.CrossRefGoogle ScholarPubMed
Leri, M, Scuto, M, Ontario, ML, et al. (2020) Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci 21, 1250. https://doi.org/10.3390/ijms21041250.CrossRefGoogle ScholarPubMed
Abbatecola, AM, Russo, M & Barbieri, M (2018) Dietary patterns and cognition in older persons. Curr Opin Clin Nutr Metab Care 21, 1013. https://doi.org/10.1097/mco.0000000000000434.CrossRefGoogle ScholarPubMed
Manach, C., Scalbert, A., Morand, C., et al. (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727747.CrossRefGoogle ScholarPubMed
Estruch, R, Ros, E, Salas-Salvado, J, et al. (2013) Primary prevention of cardiovascular disease with Mediterranean diet. N Engl J Med 368, 1279e90.CrossRefGoogle ScholarPubMed
Martinez-Gonzalez, MA, Salas-Salvado, J, Estruch, R, et al. (2015) Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis 58, 50e60.CrossRefGoogle ScholarPubMed
Scarmeas, N, Stern, Y, Tang, MX, et al. (2006). Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59, 912e21. doi: 10.1002/ana.20854 CrossRefGoogle ScholarPubMed
Neth, BJ, Mintz, A, Whitlow, C, et al. (2020) Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: a pilot study. Neurobiol Aging 86, 5463. doi: 10.1016/j.neurobiolaging.2019.09.015 CrossRefGoogle ScholarPubMed
Gu, Y, Brickman, AM, Stem, Y, et al. (2015) Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 85, 17441751.CrossRefGoogle Scholar
Peters, R, Peters, J, Warner, J et al. (2008) Alcohol, dementia and cognitive decline in the elderly: a systematic review. Age Ageing 37, 505512.CrossRefGoogle ScholarPubMed
Naimi, TS, Stadtmueller, LA, Chikritzhs, T et al. (2019) Alcohol, age, and mortality: estimating selection bias due to premature death. J Stud Alcohol Drugs 80, 6368.CrossRefGoogle ScholarPubMed
Teng, H & Chen, L (2019) Polyphenols and bioavailability: an update. Crit Rev Food Sci Nutr 59, 20402051. https://doi.org/10.1080/10408398.2018.1437023.CrossRefGoogle ScholarPubMed
Sobhani, M, Farzaei, MH, Kiani, S, et al. (2020) Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols: a comparative review on the parental compounds and their metabolites. Food Rev Int, 153. https://doi.org/10.1080/87559129.2020.1717523.Google Scholar
Wiczkowski, W, Szawara-Nowak, D, Topolska, J, et al. (2014) Metabolites of dietary quercetin: profile, isolation, identification, and antioxidant capacity. J Funct Foods 11, 121129. https://doi.org/10.1016/j.jff.2014.09.013.CrossRefGoogle Scholar
Cueva, C, Gil-Sanchez, I, Ayuda-Duran, B, et al. (2017) An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules 22. https://doi.org/10.3390/molecules22010099.CrossRefGoogle ScholarPubMed
Long, JM & Holtzman, DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312339. https://doi.org/10.1016/j.cell.2019.09.001.CrossRefGoogle ScholarPubMed
Neth, BJ & Craft, S (2017) Insulin resistance and alzheimer’s disease: bioenergetic linkages. Front Aging Neurosci 9. https://doi.org/10.3389/fnagi.2017.00345.CrossRefGoogle ScholarPubMed
Sigla, RK, Dubey, AK, Garg, A, et al. (2019) Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 102, 14. https:/doi.org/10.5740/jaoacint.19-0133 Google Scholar
Angeloni, C, Malaguti, M, Barbalace, M, et al. (2017) Bioactivity of olive oil phenols in neuroprotection. Int J Mol Sci 18, 2230. https://doi.org/10.3390/ijms18112230.CrossRefGoogle ScholarPubMed
Piroddi, M, Albini, A, Fabiani, R, et al. (2016) Nutrigenomics of extra-virgin olive oil: a review. BioFactors 43, 1741. https://doi.org/10.1002/biof.1318.CrossRefGoogle ScholarPubMed
Jimenez-Lopez, C, Carpena, M, Lourenço-Lopes, C, et al. (2020) Bioactive compounds and quality of extra virgin olive oil. Foods 9, 1014. https://doi.org/10.3390/foods9081014.CrossRefGoogle ScholarPubMed
Gorzynik-Debicka, M, Przychodzen, P, Cappello, F, et al. (2018) Potential health benefits of olive oil and plant polyphenols. Int J Mol Sci 19, 686. https://doi.org/10.3390/ijms19030686.CrossRefGoogle ScholarPubMed
Sánchez-Fidalgo, S, Villegas, I, Rosillo, , et al. (2015) Dietary squalene supplementation improves DSS-induced acute colitis by downregulating p38 MAPK and NFkB signaling pathways. Mol Nutr Food Res 59, 284292. https://doi.org/10.1002/mnfr.201400518.CrossRefGoogle ScholarPubMed
Rodríguez-Morató, J, Xicota, L, Fitó, M, et al. (2015) Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 20, 46554680. https://doi.org/10.3390/molecules20034655.CrossRefGoogle ScholarPubMed
Moreau, RA, Nyström, L, Whitaker, BD, et al. (2018) Phytosterols and their derivates: structural diversity, distribution, metabolism, analysis, and health-promotin uses. Progr Lipid Res 70, 3561. https://doi.org/10.1016/j.plipres.2018.04.001 CrossRefGoogle Scholar
Vezza, T, Canet, F, De Marañón, AM, et al. (2020) Phytosterols: nutritional health players in the management of obesity and its related disorders. Antioxidants 9, 1266. https://doi.org/10.3390/antiox9121266.CrossRefGoogle ScholarPubMed
Jun, G, Moncaster, JA, Koutras, C, et al. (2012) δ-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes. PLoS ONE 7, 111. https.//doi.org/10.1371/journal.pone.0043728 CrossRefGoogle ScholarPubMed
Visioli, F, Panaite, SA & Tome-Carneiro, J (2020) Wine’s phenolic compounds and health: a Pythagorean view. Molecules 25, 4105. https://doi.org/10.3390/molecules25184105.CrossRefGoogle Scholar
Prata-Sena, M, Castro-Carvalho, BM, Nunes, S, et al. (2018) The terroir of Port wine: two hundred and sixty years of history. Food Chem 257, 388398. https://doi.org/10.1016/j.foodchem.2018.03.014.CrossRefGoogle ScholarPubMed
Caruana, M, Cauchi, R & Vassallo, N (2016) Putative role of red wine polyphenols against brain pathology in Alzheimer’s and Parkinson’s disease. Front Nutr 3, 31. https://doi.org/10.3389/fnut.2016.00031.CrossRefGoogle ScholarPubMed
Li, Q, Liu, Y & Sun, M (2017) Autophagy and Alzheimer’s disease. Cell Mol Neurobiol 37, 377388. https://doi.org/10.1007/s10571-016-0386-8.CrossRefGoogle ScholarPubMed
Tillement, L, Lecanu, L & Papadopoulos, V (2011) Alzheimer's disease: effects of beta-amyloid on mitochondria. Mitochondrion 11, 1321. doi: 10.1016/j.mito.2010.08.009.CrossRefGoogle ScholarPubMed
Velander, P, Wu, L, Henderson, F, et al. (2017) Natural product-based amyloid inhibitors. Biochem Pharmacol 139, 4055. https://doi.org/10.1016/j.bcp.2017.04.004.CrossRefGoogle ScholarPubMed
Leri, M, Natalello, A, Bruzzone, E, et al. (2019) Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ1-42 aggregation. Food Chem Toxicol 129, 112. https://doi.org/10.1016/j.fct.2019.04.015.CrossRefGoogle Scholar
Grossi, C, Rigacci, S, Ambrosini, S, et al. (2013) The polyphenol oleuropein aglycone protects TgCRND8 mice against Ass plaque pathology. PLoS ONE 8, e71702. doi: 10.1371/journal.pone.0071702.CrossRefGoogle ScholarPubMed
Luccarini, I, Grossi, C, Rigacci, S, et al. (2015) Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ss toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging 36, 648663. doi: 10.1016/j.neurobiolaging.2014.08.029.CrossRefGoogle ScholarPubMed
Pantano, D, Luccarini, I, Nardiello, P, et al. (2017) Oleuropein aglycone and polyphenols from olive mill waste water ameliorate cognitive deficits and neuropathology. Brit J Clin Pharmacol 83, 5462. https://doi.org/10.1111/bcp.12993.CrossRefGoogle ScholarPubMed
Ho, L, Ferruzzi, MG, Janle, EM, et al. (2013) Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. Faseb J 27, 769781. https://doi.org/10.1096/fj.12-212118.CrossRefGoogle ScholarPubMed
Ho, L, Chen, LH, Wang, J, et al. (2009). Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer’s disease-type neuropathology and cognitive deterioration. J Alzheimer’s Dis 16, 5972. https://doi.org/10.3233/JAD-2009-0916.CrossRefGoogle ScholarPubMed
Wang, J, Ho, L, Zhao, W, et al. (2008) Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 28, 63886392. https://doi.org/10.1523/JNEUROSCI.0364-08.2008.CrossRefGoogle Scholar
Ono, K, Condron, MM, Ho, L, et al. (2008) Effects of grape seed-derived polyphenols on amyloid beta-protein self-assembly and cytotoxicity. J Biol Chem 283, 3217632187. https://doi.org/10.1074/jbc.M806154200.CrossRefGoogle ScholarPubMed
Wang, YJ, Thomas, P, Zhong, JH, et al. (2009) Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res 15, 314. https://doi.org/10.1007/s12640-009-9000-x.CrossRefGoogle ScholarPubMed
Feng, Y, Wang, XP, Yang, SG, et al. (2009) Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology 30, 986995. https://doi.org/10.1016/j.neuro.2009.08.013.CrossRefGoogle Scholar
Riviere, C, Richard, T, Quentin, L, et al. (2007) Inhibitory activity of stilbenes on Alzheimer’s beta-amyloid fibrils in vitro . Bioorg Med Chem 15, 11601167. https://doi.org/10.1016/j.bmc.2006.09.069.CrossRefGoogle ScholarPubMed
Fu, Z, Aucoin, D, Ahmed, M, et al. (2014) Capping of aβ42 oligomers by small molecule inhibitors. Biochemistry 53, 78937903. https://doi.org/10.1021/bi500910b.CrossRefGoogle ScholarPubMed
Ge, JF, Qiao, JP, Qi, CC, et al. (2012) The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 61, 11921201. https://doi.org/10.1016/j.neuint.2012.08.012.CrossRefGoogle ScholarPubMed
Ladiwala, AR, Lin, JC, Bale, SS, et al. (2010) Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers. J Biol Chem 285, 2422824237. https://doi.org/10.1074/jbc.M110.133108.CrossRefGoogle ScholarPubMed
Karuppagounder, SS, Pinto, JT, Xu, H, et al. (2009). Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54, 111118. https://doi.org/10.1016/j.neuint.2008.10.008.CrossRefGoogle Scholar
Porquet, D, Grinan-Ferre, C, Ferrer, I, et al. (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimer’s Dis 42, 12091220. https://doi.org/10.3233/JAD-140444.CrossRefGoogle Scholar
Porquet, D, Casadesus, G, Bayod, S, et al. (2013) Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age 35, 18511865. https://doi.org/10.1007/s11357-012-9489-4.CrossRefGoogle ScholarPubMed
Vingtdeux, V, Giliberto, L, Zhao, H, et al. (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285, 91009113. https://doi.org/10.1074/jbc.M109.060061.CrossRefGoogle ScholarPubMed
Santos, LM, Rodrigues, D, Alemi, M, et al. (2016) Resveratrol administration increases Transthyretin protein levels ameliorating AD features – importance of transthyretin tetrameric stability. Mol Med 22, 597607. https://doi.org/10.2119/molmed.2016.00124.CrossRefGoogle ScholarPubMed
Li, SY, Wang, XB & Kong, LY (2014) Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur J Med Chem 71, 3645. https://doi.org/10.1016/j.ejmech.2013.10.068.CrossRefGoogle ScholarPubMed
Lu, C, Guo, Y, Yan, J, et al. (2013) Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of Alzheimer’s disease. J Med Chem 56, 58435859. https://doi.org/10.1021/jm400567s.CrossRefGoogle ScholarPubMed
Xu, P, Zhang, M, Sheng, R et al. (2017) Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ1-42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur J Med Chem 127, 174186. https://doi.org/10.1016/j.ejmech.2016.12.045.CrossRefGoogle Scholar
Espargaro, A, Ginex, T, Vadell, MD, et al. (2017) Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-Alzheimer drugs. J Nat Prod 80, 278289. https://doi.org/10.1021/acs.jnatprod.6b00643.CrossRefGoogle ScholarPubMed
Suganthy, N, Devi, KP, Nabavi, SF, et al. (2016) Bioactive effects of quercetin in the central nervous system: focusing on the mechanisms of actions. Biomed Pharmacother 84, 892908. https://doi.org/10.1016/j.biopha.2016.10.011.CrossRefGoogle ScholarPubMed
Wang, DM, Li, SQ, Wu, WL, et al. (2014) Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem Res 39, 15331543. https://doi.org/10.1007/s11064-014-1343-x.CrossRefGoogle Scholar
Sabogal-Guaqueta, AM, Munoz-Manco, JI, Ramirez-Pineda, JR, et al. (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93, 134145. https://doi.org/10.1016/j.neuropharm.2015.01.027.CrossRefGoogle ScholarPubMed
Zhang, X, Hu, J, Zhong, L, et al. (2016) Quercetin stabilizes apolipoprotein E and reduces brain Aβ levels in amyloid model mice. Neuropharmacology 108, 179192. https://doi.org/10.1016/j.neuropharm.2016.04.032.CrossRefGoogle ScholarPubMed
Paula, PC, Angelica Maria, SG, Luis, CH, et al. (2019) Preventive Effect of quercetin in a triple transgenic Alzheimer’s disease mice model. Molecules 24, 2287. https://doi.org/10.3390/molecules24122287.CrossRefGoogle Scholar
Rifaai, RA, Mokhemer, SA, Saber, EA, et al. (2020) Neuroprotective effect of quercetin nanoparticles: a possible prophylactic and therapeutic role in Alzheimer’s disease. J Chem Neuroanat 107, 101795. https://doi.org/10.1016/j.jchemneu.2020.101795.CrossRefGoogle ScholarPubMed
Yu, M, Chen, X, Liu, J, et al. (2019) Gallic acid disruption of Aβ1-42 aggregation rescues cognitive decline of APP/PS1 double transgenic mouse. Neurobiol Dis 124, 6780. https://doi.org/10.1016/j.nbd.2018.11.009.CrossRefGoogle Scholar
Iqbal, K & Grundke-Iqbal, I (2008) Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 12, 3855. doi: 10.1111/j.1582-4934.2008.00225.x CrossRefGoogle ScholarPubMed
Rigacci, S & Stefani, M (2016) Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int J Mol Sci 17, 843. https://doi.org/10.3390/ijms17060843.CrossRefGoogle ScholarPubMed
Jhang, KA, Park, JS, Kim, HS, et al. (2017) Resveratrol ameliorates tau hyperphosphorylation at Ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: implication of ERK1/2 and GSK-3β signaling cascades. J Agric Food Chem 65, 96269634. https://doi.org/10.1021/acs.jafc.7b03252.CrossRefGoogle ScholarPubMed
He, X, Li, Z, Rizak, JD, et al. (2016) Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Front Neurosci 10, 598. https://doi.org/10.3389/fnins.2016.00598.Google ScholarPubMed
Sun, XY, Dong, QX, Zhu, J, et al. (2019) Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr Alzheimer Res 16, 710722. https://doi.org/10.2174/1567205016666190801153751.CrossRefGoogle Scholar
Schweiger, S, Matthes, F, Posey, K, et al. (2017) Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci Rep 7, 13753. https://doi.org/10.1038/s41598-017-12974-4.CrossRefGoogle ScholarPubMed
Means, JC, Lopez, AA & Koulen, P (2020) Resveratrol protects optic nerve head astrocytes from oxidative stress-induced cell death by preventing caspase-3 activation, tau dephosphorylation at Ser(422) and formation of misfolded protein aggregates. Cell Mol Neurobiol 40, 911926. https://doi.org/10.1007/s10571-019-00781-6.CrossRefGoogle ScholarPubMed
Al-Bishri, WM, Hamza, AH & Farran, SK (2017) Resveratrol treatment attenuates amyloid beta, tau protein and markers of oxidative stress, and inflammation in Alzheimer’s disease rat model. Int J Pharm Res Allied Sci 6.Google Scholar
Lin, YT, Wu, YC, Sun, GC, et al. (2018) Effect of resveratrol on reactive oxygen species-induced cognitive impairment in rats with angiotensin II-induced early Alzheimer’s disease (dagger). J Clin Med 7, 329. https://doi.org/10.3390/jcm7100329.CrossRefGoogle Scholar
Chen, JJ, Deng, XY, Liu, N, et al. (2016) Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J Funct Foods 22, 463476. https://doi.org/10.1016/j.jff.2016.01.036.CrossRefGoogle Scholar
Shen, XY, Luo, T, Li, S, et al. (2018) Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+–calpain–p25–CDK5 pathway in HT22 cells. Int J Mol Med 41, 11381146. https://doi.org/10.3892/ijmm.2017.3281.Google ScholarPubMed
Ali, T, Kim, MJ, Rehman, SU, Ahmad, A, et al. (2017) Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Abeta1-42 mouse model of Alzheimer’s disease. Mol Neurobiol 54, 64906506. https://doi.org/10.1007/s12035-016-0136-4.CrossRefGoogle Scholar
Ogunlade, B, Adelakun, SA & Agie, JA (2020) Nutritional supplementation of gallic acid ameliorates Alzheimer-type hippocampal neurodegeneration and cognitive impairment induced by aluminum chloride exposure in adult Wistar rats. Drug Chem Toxicol, 112. https://doi.org/10.1080/01480545.2020.1754849.Google ScholarPubMed
Sul, D, Kim, HS, Lee, D, et al. (2009) Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci 84, 257262. https://doi.org/10.1016/j.lfs.2008.12.001.CrossRefGoogle ScholarPubMed
Benvenuto, M, Albonici, L, Focaccetti, C, et al. (2020) Polyphenol-mediated autophagy in cancer: evidence of in vitro and in vivo studies. Int J Mol Sci 21, 6635. https://doi.org/10.3390/ijms21186635.CrossRefGoogle ScholarPubMed
Jeong, JK, Moon, MH, Bae, BC, et al. (2012) Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 73, 99105. https://doi.org/10.1016/j.neures.2012.03.005.CrossRefGoogle ScholarPubMed
Lin, TK, Chen, SD, Chuang, YC, et al. (2014) Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 15, 16251646. https://doi.org/10.3390/ijms15011625.CrossRefGoogle ScholarPubMed
Wu, Y, Li, X, Zhu, JX, et al. (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19, 163174. https://doi.org/10.1159/000328516.CrossRefGoogle ScholarPubMed
Deng, H & Mi, MT (2016) Resveratrol attenuates Abeta25-35 caused neurotoxicity by inducing autophagy through the TyrRS-PARP1-SIRT1 signaling pathway. Neurochem Res 41, 23672379. https://doi.org/10.1007/s11064-016-1950-9.CrossRefGoogle ScholarPubMed
Wang, H, Jiang, T, Li, W, et al. (2018) Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol Lett 282, 100108. https://doi.org/10.1016/j.toxlet.2017.10.021.CrossRefGoogle Scholar
Liu, Y, Zhou, H, Yin, T, et al. (2019) Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J Colloid Interface Sci 552, 388400. https://doi.org/10.1016/j.jcis.2019.05.066.CrossRefGoogle ScholarPubMed
Reddy, PH & Oliver, DM (2019) Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 8, 488. https://doi.org/10.3390/cells8050488.CrossRefGoogle ScholarPubMed
Grewal, R, Reutzel, M, Dilberger, B, et al. (2020) Purified oleocanthal and ligstroside protect against mitochondrial dysfunction in models of early Alzheimer’s disease and brain ageing. Exp Neurol 328, 113248. https://doi.org/10.1016/j.expneurol.2020.113248.CrossRefGoogle ScholarPubMed
Visioli, F, Rodríguez-Pérez, M, Gómez-Torres, Ó, et al. (2020) Hydroxytyrosol improves mitochondrial energetics of a cellular model of Alzheimer’s disease. Nutr Neurosci, 111. https://doi.org/10.1080/1028415x.2020.1829344.Google ScholarPubMed
Peng, Y, Hou, C, Yang, Z, et al. (2016) Hydroxytyrosol mildly improve cognitive function independent of APP processing in APP/PS1 mice. Mol Nutr Food Res 60, 23312342. https://doi.org/10.1002/mnfr.201600332.CrossRefGoogle ScholarPubMed
Reutzel, M, Grewal, R, Silaidos, C, et al. (2018) Effects of long-term treatment with a blend of highly purified olive secoiridoids on cognition and brain ATP levels in aged NMRI mice. Oxid Med Cell Longev 2018, 4070935. https://doi.org/10.1155/2018/4070935.CrossRefGoogle ScholarPubMed
Howitz, KT, Bitterman, KJ, Cohen, HY, et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191196. https://doi.org/10.1038/nature01960.CrossRefGoogle ScholarPubMed
Sanchez-Fidalgo, S, Villegas, I, Sanchez-Hidalgo, M et al. (2012) Sirtuin modulators: mechanisms and potential clinical implications. Curr Med Chem 19, 24142441. https://doi.org/10.2174/092986712800269272.CrossRefGoogle ScholarPubMed
Akyuva, Y & Nazıroğlu, M (2020) Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep 10. https://doi.org/10.1038/s41598-020-63577-5.CrossRefGoogle ScholarPubMed
Diehl, T, Mullins, R & Kapogiannis, D (2017) Insulin resistance in Alzheimer’s disease. Transl Res 183, 2640. https://doi.org/10.1016/j.trsl.2016.12.005.CrossRefGoogle ScholarPubMed
Crespo, MC, Tomé-Carneiro, J, Pintado, C, et al. (2017) Hydroxytyrosol restores proper insulin signaling in an astrocytic model of Alzheimer’s disease. BioFactors 43, 540548. https://doi.org/10.1002/biof.1356.CrossRefGoogle Scholar
D’Andrea, G, Ceccarelli, M, Bernini, R, et al. (2020) Hydroxytyrosol stimulates neurogenesis in aged dentate gyrus by enhancing stem and progenitor cell proliferation and neuron survival. Faseb J 34, 45124526. https://doi.org/10.1096/fj.201902643R.CrossRefGoogle ScholarPubMed
Batarseh, YS, Mohamed, LA, Al Rihani, SB, et al. (2017) Oleocanthal ameliorates amyloid-β oligomers’ toxicity on astrocytes and neuronal cells: in vitro studies. Neuroscience 352, 204215. https://doi.org/10.1016/j.neuroscience.2017.03.059.CrossRefGoogle ScholarPubMed
Cao, K, Xu, J, Zou, X, et al. (2014) Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic Biol Med 67, 396407.CrossRefGoogle ScholarPubMed
Lepore, SM, Maggisano, V, Bulotta, S, et al. (2019) Oleacein prevents high fat diet-induced adiposity and ameliorates some biochemical parameters of insulin sensitivity in mice. Nutrients 11, 1829. https://doi.org/10.3390/nu11081829.CrossRefGoogle ScholarPubMed
Lombardo, GE, Lepore, SM, Morittu, VM, et al. (2018) Effects of oleacein on high-fat diet-dependent steatosis, weight gain, and insulin resistance in mice. Front Endocrinol 9, 116 doi: 10.3389/fendo.2018.00116. eCollection 2018.CrossRefGoogle ScholarPubMed
Du, L-L, Xie, J-Z, Cheng, X-S, et al. (2014). Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. AGE 36, 613623. https://doi.org/10.1007/s11357-013-9592-1.CrossRefGoogle ScholarPubMed
Heyward, FD, Gilliam, D, Coleman, MA, et al. (2016) Obesity weighs down memory through a mechanism involving the neuroepigenetic dysregulation of Sirt1. J Neurosci 36, 13241335. https://doi.org/10.1523/jneurosci.1934-15.2016.CrossRefGoogle ScholarPubMed
Sarroca, S, Gatius, A, Rodríguez-Farré, E, et al. (2021) Resveratrol confers neuroprotection against high-fat diet in a mouse model of Alzheimer’s disease via modulation of proteolytic mechanisms. J Nutr Biochem 89, 108569. https://doi.org/10.1016/j.jnutbio.2020.108569.CrossRefGoogle Scholar
Martínez-Lapiscina, EH, Clavero, P, Toledo, E, et al. (2013) Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry 84, 13181325. https://doi.org/10.1136/jnnp-2012-304792.CrossRefGoogle ScholarPubMed
Tzekaki, EE, Tsolaki, M, Pantazaki, AA, et al. (2021) The pleiotropic beneficial intervention of olive oil intake on the Alzheimer’s disease onset via fibrinolytic system. Exp Gerontol 150, 111344. doi: 10.1016/j.exger.2021.111344.CrossRefGoogle ScholarPubMed
Lindsay, J (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156, 445453. https://doi.org/10.1093/aje/kwf074.CrossRefGoogle ScholarPubMed
Solfrizzi, V, D’Introno, A, Colacicco, AM, et al. (2007) Alcohol consumption, mild cognitive impairment, and progression to dementia. Neurology 68, 17901799. https://doi.org/10.1212/01.wnl.0000262035.87304.89.CrossRefGoogle ScholarPubMed
Mehlig, K, Skoog, I, Guo, X, et al. (2007) Alcoholic beverages and incidence of dementia: 34-year follow-up of the prospective population study of women in Goteborg. Am J Epidemiol 167, 684691. https://doi.org/10.1093/aje/kwm366.CrossRefGoogle Scholar
Arntzen, KA, Schirmer, H, Wilsgaard, T, et al. (2010) Moderate wine consumption is associated with better cognitive test results: a 7 year follow up of 5033 subjects in the Tromsø Study. Acta Neurol Scand 122, 2329. https://doi.org/10.1111/j.1600-0404.2010.01371.x.CrossRefGoogle Scholar
Lee, J, Torosyan, N & Silverman, DH (2017) Examining the impact of grape consumption on brain metabolism and cognitive function in patients with mild decline in cognition: a double-blinded placebo controlled pilot study. Exp Gerontol 87, 121128. https://doi.org/10.1016/j.exger.2016.10.004.CrossRefGoogle ScholarPubMed
Kennedy, DO, Wightman, EL, Reay, JL, et al. (2010) Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr 91, 15901597. https://doi.org/10.3945/ajcn.2009.28641.CrossRefGoogle ScholarPubMed
Witte, AV, Kerti, L, Margulies, DS, et al. (2014) Effects of Resveratrol on Memory Performance, Hippocampal Functional Connectivity, and Glucose Metabolism in Healthy Older Adults. J Neurosci 34, 78627870. https://doi.org/10.1523/jneurosci.0385-14.2014.CrossRefGoogle ScholarPubMed
Turner, RS, Thomas, RG, Craft, S, et al. (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85, 13831391. https://doi.org/10.1212/wnl.0000000000002035.CrossRefGoogle ScholarPubMed
Moussa, C, Hebron, M, Huang, X, et al. (2017) Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 14. https://doi.org/10.1186/s12974-016-0779-0.CrossRefGoogle ScholarPubMed
Köbe, T, Witte, AV, Schnelle, A, et al. (2017) Impact of resveratrol on glucose control, hippocampal structure and connectivity, and memory performance in patients with mild cognitive impairment. Front Neurosci 11. https://doi.org/10.3389/fnins.2017.00105.CrossRefGoogle ScholarPubMed
Evans, H, Howe, P & Wong, R (2017) Effects of resveratrol on cognitive performance, mood and cerebrovascular function in post-menopausal women; a 14-week randomised placebo-controlled intervention trial. Nutrients 9, 27. https://doi.org/10.3390/nu9010027.CrossRefGoogle ScholarPubMed
Thaung Zaw, JJ, Howe, PR & Wong, RH (2020) Long-term effects of resveratrol on cognition, cerebrovascular function and cardio-metabolic markers in postmenopausal women: a 24-month randomised, double-blind, placebo-controlled, crossover study. Clin Nutr. https://doi.org/10.1016/j.clnu.2020.08.025.Google ScholarPubMed
Huhn, S, Beyer, F, Zhang, R, et al. (2018) Effects of resveratrol on memory performance, hippocampus connectivity and microstructure in older adults – a randomized controlled trial. NeuroImage 174, 177190. https://doi.org/10.1016/j.neuroimage.2018.03.023.CrossRefGoogle ScholarPubMed
Zhu, CW, Grossman, H, Neugroschl, J, et al. (2018) A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: a pilot study. Alzheimer’s Dementia Transl Res Clin Interv 4, 609616. https://doi.org/10.1016/j.trci.2018.09.009.CrossRefGoogle ScholarPubMed