Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T18:28:12.528Z Has data issue: false hasContentIssue false

Nutritional Influences on Interactions Between Bacteria and the Small Intestinal Mucosa

Published online by Cambridge University Press:  14 December 2007

D. Kelly
Affiliation:
Rowett Research InstituteBucksburn, Aberdeen, Scotland, AB2 9SB
R. Begbie
Affiliation:
Rowett Research InstituteBucksburn, Aberdeen, Scotland, AB2 9SB
T. P. King
Affiliation:
Rowett Research InstituteBucksburn, Aberdeen, Scotland, AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Abud, R. L., Lindquist, B. L., Ernst, R. K., Merick, J. M., Lebenthal, E. & Lee, P. C. (1989). Concanavalin. A promotes adherence of Salmonella typhimurium to small intestinal mucosa of rats. Proceedings of the Society for Experimental Biology and Medicine 192, 8186.CrossRefGoogle ScholarPubMed
Amos, B., Deutsch, V. & Lotan, R. (1990). Modulation by all-trans retinoic acid of glycoprotein glycosylation in murine melanoma cells: enhancement of fucosyl- and galactosyltransferase activities. Cancer Biochemistry Biophysics 11, 3143.Google ScholarPubMed
Andrade, J. R. C. (1980). [Role of fimbrial adhesiveness in experimental guinea-pig keratoconjunctivitis by Shigella flexnerii.] Revista de Microbiologia 11, 117125.Google Scholar
Aronson, M., Medalia, O., Schori, L., Mirelman, D., Sharon, N. & Ofek, I. (1979). Prevention of colonization of the urinary tract of mice with Escherichia coli by blocking of bacterial adherence with methyl α-D-mannopyranoside. Journal of Infectious Diseases 139, 329332.CrossRefGoogle ScholarPubMed
Ashkenazi, S. & Mirelman, D. (1987). Nonimmunoglobulin fraction of human milk inhibits the adherence of certain enterotoxigenic Escherichia coli strains to guinea pig intestinal tract. Pediatric Research 22, 130134.CrossRefGoogle ScholarPubMed
Aslanzadeh, J. & Paulissen, L. J. (1990). Adherence and pathogenesis of Salmonella enteritidis in mice. Microbiology and Immunology 34, 885893.CrossRefGoogle ScholarPubMed
Azuma, N., Yamauchi, K. & Mitsuoka, T. (1984). Bifidus growth-promoting activity of a glycomacropeptide derived from human ĸ-casein. Agricultural and Biological Chemistry 48, 21592162.Google Scholar
Baba, E., Tsukamoto, Y., Fukata, T., Sasai, K. & Arakawa, A. (1993). Increase of mannose residues, as Salmonella typhimurium-adhering factor, on the cecal mucosa of germ-free chickens infected with Eimeria tenella. American Journal of Veterinary Research 54, 14711475.CrossRefGoogle ScholarPubMed
Balmer, S. E. & Wharton, B. A. (1989). Diet and faecal flora in the newborn: breast milk and infant formula. Archives of Disease in Childhood 64, 16721677.CrossRefGoogle ScholarPubMed
Banwell, J. G., Boldt, D. H., Meyers, J. & Weber, F. L. (1983). Phytohemagglutinin derived from red kidney bean (Phaseolus vulgaris): a cause for intestinal malabsorption associated with bacterial overgrowth in the rat. Gastroenterology 84, 506515.CrossRefGoogle ScholarPubMed
Banwell, J. G., Howard, R., Cooper, D. & Costerton, J. W. (1985). Intestinal microbial flora after feeding phytohemagglutinin lectins (Phaseolus vulgaris) to rats. Applied and Environmental Microbiology 50, 6880.CrossRefGoogle ScholarPubMed
Beachey, E. H. & Courtney, H. S. (1989). Bacterial adherence of group A streptococci to mucosal surfaces. Respiration 55, Suppl. 1, 3340.CrossRefGoogle Scholar
Beerens, H., Romond, C. & Neut, C. (1980). Influence of breast-feeding on the bifid flora of the newborn intestine. American Journal of Clinical Nutrition 33, 24342439.CrossRefGoogle ScholarPubMed
Benno, Y., Sawada, K. & Mitsuoka, T. (1984). The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiology and Immunology 28, 975986.CrossRefGoogle ScholarPubMed
Bezkorovainy, A. (1989). Ecology of Bifidobacteria. In Biochemistry and Physiology of Bifidobacteria, pp. 2972 [Bezkorovainy, A and Miller-Catchpole, R, editors]. Boca Raton, FL: CRC Press.Google Scholar
Bezkorovainy, A., Grohlich, D. & Nichols, J. H. (1979). Isolation of a glycopolypeptide fraction with Lactobacillus bifidus subspecies pennyslvanicus growth-promoting activity from whole human milk casein. American Journal of Clinical Nutrition 32, 14281432.CrossRefGoogle Scholar
Bezkorovainy, A. & Nichols, J. H. (1976). Glycoproteins from mature human milk whey. Pediatric Research 10, 15.CrossRefGoogle ScholarPubMed
Bezkorovainy, A. & Topouzian, N. (1981). Bifidobacterium bifidum var. pennsylvancius growth promoting activity of human milk casein and its derivatives. International Journal of Biochemistry 13, 585590.CrossRefGoogle Scholar
Bezkorovainy, A., Topouzian, N. & Miller-Catchpole, R. (1986). Mechanisms of ferric and ferrous iron uptake by Bifidobacterium bifidum var. pennsylvanicus. Clinical Physiology and Biochemistry 4, 150158.Google ScholarPubMed
Bijlsma, I. G. W. & Bouw, J. (1987). Inheritance of K88-mediated adhesion of Escherichia coli to jejunal brush borders in pigs: a genetic analysis. Veterinary Research Communications 11, 509518.CrossRefGoogle ScholarPubMed
Bijlsma, I. G. W., De Nijs, A., van Der Meer, C. & Frik, J. F. (1982). Different pig phenotypes affect adherence of Escherichia coli to jejunal brush borders by K88ab, K88ac, or K88ad antigen. Infection and Immunity 37, 891894.CrossRefGoogle ScholarPubMed
Biol, M.-C., Martin, A., Gaertner, H., Puigserver, A., Richard, M. & Louisot, P. (1990). Intestinal glycosyltransferase activities. Nutritional regulation by a chemically modified protein: methionyl-casein. Biochemistry International 20, 239250.Google ScholarPubMed
Biol, M.-C., Martin, A. & Louisot, P. (1992). Nutritional and developmental regulation of glycosylation processes in digestive organs. Biochimie 74, 1324.CrossRefGoogle ScholarPubMed
Biol, M.-C., Martin, A., Oehninger, C., Louisot, P. & Richard, M. (1981). Biosynthesis of glycoproteins in the intestinal mucosa. II. Influence of diets. Annals of Nutrition and Metabolism 25, 269280.CrossRefGoogle ScholarPubMed
Blomberg, L. & Conway, P. L. (1989). An in vitro study of colonisation resistance to Escherichia coli Bd 1107/7508 (K88) in relation to indigenous squamous gastric colonisation in piglets of varying ages. Microbial Ecology in Health and Disease 2, 285291.CrossRefGoogle Scholar
Blomberg, L., Henriksson, A. & Conway, P. L. (1993). Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Applied and Environmental Microbiology 59, 3439.CrossRefGoogle ScholarPubMed
Boedeker, E. C. (1994). Adherent bacteria: breathing the mucosal barrier? Gastroenterology 106, 255257.CrossRefGoogle Scholar
Borén, T., Falk, P., Roth, K. A., Larson, G. & Normark, S. (1993). Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 18921895.CrossRefGoogle ScholarPubMed
Brinton, C. C. (1965). The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in Gram negative bacteria. Transactions of the New York Academy of Sciences 27, 10031054.CrossRefGoogle Scholar
Brooks, D. E., Cavanagh, J., Jayroe, D., Janzen, J., Snoek, R. & Trust, T. J. (1989). Involvement of the MN blood group antigen in shear-enhanced hemagglutination induced by the Escherichia coli F41 adhesin. Infection and Immunity 57, 377383.CrossRefGoogle ScholarPubMed
Buhler, T., Hoschutzky, H. & Jann, K. (1991). Analysis of the colonization factor antigen (CF/1) from enterotoxigenic E. coli O78:H11. Bioforum 14, 55.Google Scholar
Christensen, G. D., Simpson, W. A. & Beachey, E. H. (1985). Adhesion of bacteria to animal tissues: complex mechanisms. In Bacterial Adhesion, pp. 279305 [Savage, D. C. and Fletcher, M., editors]. London: Plenum Press.CrossRefGoogle Scholar
Clegg, S. & Gerlach, G. F. (1987). Enterobacterial fimbriae. Journal of Bacteriology 169, 934938.CrossRefGoogle ScholarPubMed
Coconnier, M.-H., Klaenhammer, T. R., Kernéis, S., Bernet, M.-F. & Servin, A. L. (1992). Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Applied and Environmental Microbiology 58, 20342039.CrossRefGoogle ScholarPubMed
Collinson, S. K., Doig, P. C., Doran, J. L., Clouthier, S., Trust, T. J. & Kay, W. W. (1993). Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. Journal of Bacteriology 175, 1218.CrossRefGoogle ScholarPubMed
Conway, P. L., Gorbach, S. L. & Goldin, B. R. (1987). Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. Journal of Dairy Science 70, 112.CrossRefGoogle ScholarPubMed
Conway, P. L., Welin, A. & Cohen, P. S. (1990). Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infection and Immunity 58, 31783182.CrossRefGoogle ScholarPubMed
Corfield, T. (1992). Bacterial sialidases – roles in pathogenicity and nutrition. Glycobiology 2, 509521.CrossRefGoogle ScholarPubMed
Courtney, H. S., Von Hunolstein, C., Dale, J. B., Bronze, M. S., Beachey, E. H. & Hasty, D. L. (1992). Lipoteichoic acid and M protein: dual adhesins of group A streptococci. Microbial Pathogenesis 12, 199208.CrossRefGoogle Scholar
Cox, E. & Houvenaghel, A. (1993). Comparison of the in vitro adhesion of K88, K99, F41 and P987 positive Escherichia coli to intestinal villi of 4-week-old to 5-week-old pigs. Veterinary Microbiology 34, 718.CrossRefGoogle Scholar
Cummings, R. D. & Mattox, S. A. (1988). Retionic acid-induced differentation of the mouse teratocarcinoma cell line F9 is accompanied by an increase in the activity of UDP-galactose: β-D-galactosyl-α1, 3-galactosyl-transferase. Journal of Biological Chemistry 263, 511519.CrossRefGoogle Scholar
Dean, E. A. (1990). Comparison of receptors for 987P pili of enterotoxigenic Escherichia coli in the small intestines of neonatal and older pig. Infection and Immunity 58, 40304035.CrossRefGoogle ScholarPubMed
Dean, E. A., Whipp, S. C. & Moon, H. W. (1989). Age-specific colonization of porcine intestinal epithelium by 987P-piliated enterotoxigenic Escherichia coli. Infection and Immunity 57, 8287.CrossRefGoogle ScholarPubMed
Deitch, E. A. (1994). Bacterial translocation: the influence of dietary variables. Gut Suppl. 1, S23S27.CrossRefGoogle ScholarPubMed
Donnenberg, M. S. & Kaper, J. B. (1992). Enteropathogenic Escherichia coli, Infection and Immunity 60, 39533961.CrossRefGoogle ScholarPubMed
Drumm, B., Roberton, A. M. & Sherman, P. M. (1988). Inhibition of attachment of Escherichia coli RDEC-1 to intestinal microvillus membranes by rabbit ileal mucus and mucin in vitro. Infection and Immunity 56, 24372442.CrossRefGoogle ScholarPubMed
Ducluzeau, R. (1983). Implantation and development of the gut flora in the newborn animal. Annales de Recherches Vétérinaries 14, 354359.Google ScholarPubMed
Dugid, J. P. & Old, D. C. (1980). Adhesive properties of Enterobacteriaceae. In Bacterial Adherence, pp. 185217 [Beachey, E. H., editor]. London: Chapman & Hall.CrossRefGoogle Scholar
Durno, C., Soni, R. & Sherman, P. (1989). Adherence of vero cytotoxin-producing Escherichia coli serotype O157:H7 to isolated epithelial cells and brush border membranes in vitro: role of type 1 fimbriae (pili) as a bacterial adhesin expressed by strain CL-49. Clinical and Investigative Medicine 12, 194200.Google ScholarPubMed
Elsinghorst, E. A. & Kopecko, D. J. (1992). Molecular cloning of epithelial cell invasion determinants from enterotoxigenic Escherichia coli. Infection and Immunity 60, 24092417.CrossRefGoogle ScholarPubMed
Erickson, A. K., Willgohs, J. A., McFarland, S. Y., Benfield, D. A. & Francis, D. H. (1992). Identification of two porcine brush border glycoproteins that bind the K88ac adhesin of Escherichia coli and correlation of these glycoproteins with the adhesive phenotype. Infection and Immunity 60, 983988.CrossRefGoogle ScholarPubMed
Evans, D. G. & Evans, D. J. (1978). New surface-associated heat-labile colonization factor antigen (CFA/II). produced by enterotoxigenic Escherichia coli of serogroups 06 and 08. Infection and Immunity 21, 638647.CrossRefGoogle Scholar
Evans, D. G., Karjalainen, T. K., Evans, D. J., Graham, D. Y. & Lee, C.-H. (1993). Cloning, nucleotide sequence, and expression of a gene encoding an adhesin subunit protein of Helicobacter pylori. Journal of Bacteriology 175, 674683.CrossRefGoogle ScholarPubMed
Fader, R. C. & Davis, C. P. (1980). Effect of piliation on Klebsiella pneumoniae infection in rat bladders. Infection and Immunity 30, 554561.CrossRefGoogle ScholarPubMed
Falk, P., Roth, K. A., Borén, T., Westblom, T. U., Gordon, J. I. & Normark, S. (1993). An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium. Proceedings of the National Academy of Sciences, USA 90, 20352039.CrossRefGoogle Scholar
Faris, A., Lindahl, M. & Wadström, T. (1980). GM2-like glycoconjugate as possible erythrocyte receptor for the CFA/1 and K99 haemagglutinins of enterotoxigenic Escherichia coli. FEMS Microbiology Letters 7, 265269.CrossRefGoogle Scholar
Filipe, M. I. & Fenger, C. (1979). Histochemical Characteristics of mucins in the small intestine. A comparative study of normal mucosa, bening epithelial tumours and carcinoma. Histochemical Journal 11, 277287.CrossRefGoogle Scholar
Finegold, S. M., Sutter, V. L. & Mathisen, G. E. (1983). Normal indigenous intestinal flora. In Human Intestinal Microflora in Health and Disease, pp. 331 [Hentges, D. J., editor]. New York: Academic Press.CrossRefGoogle Scholar
Firon, N., Ofek, I. & Sharon, N. (1983). Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Carbohydrate Research 120, 235249.CrossRefGoogle ScholarPubMed
Firon, N., Ofek, I. & Sharon, N. (1984). Carbohydrate-binding sites of the mannose-specific fimbrial lectins of Enterobacteria. Infection and Immunity 43, 10881090.CrossRefGoogle ScholarPubMed
Fowler, V. R. (1985). The nutrition of the piglet. In Recent Developments in Pig Nutrition, pp. 222229 [Cole, D. J. A. and Haresign, W., editors]. London: Butterworths.CrossRefGoogle Scholar
Fuller, R. (1992). History and development of probiotics. In Probiotics, the Scientific Basis, pp. 18 [Fuller, R., editor]. London: Chapman & Hall.CrossRefGoogle Scholar
Gabriel, E. P., Lindquist, B. L., Abud, R. L., Merrick, J. M. & Lebenthal, E. (1990). Effect of vitamin A deficiency on the adherence of fimbriated and nonfimbriated Salmonella typhimurium to isolated small intestinal enterocytes. Journal of Pediatric Gastroenterology and Nutrition 10, 530535.Google ScholarPubMed
Gibbons, R. J. & Dankers, I. (1981). Lectin-like constituents of foods which react with components of serum saliva, and Streptococcus mutans. Applied and Environmental Microbiology 41, 880888.CrossRefGoogle ScholarPubMed
Gibbons, R. A., Jones, G. W. & Sellwood, R. (1975). An attempt to identify the intestinal receptor for the K88 adhesin by means of a haemagglutination inhibition test using glycoproteins and fractions from sow colostrum. Journal of General Microbiology 86, 228240.CrossRefGoogle ScholarPubMed
Glass, C. K., DiRenzo, J., Kurokawa, R. & Han, Z. (1991). Regulation of gene expression by retinoic acid receptors. DNA and Cell Biology 10, 623638.CrossRefGoogle ScholarPubMed
Gorbach, S. L. (1990). Lactic acid bacteria and human health. Annals of Medicine 22, 3741.CrossRefGoogle ScholarPubMed
Gross, R. J. (1990). Escherichia coli diarrhoea. In Topley & Wilson's Principles of Bacteriology, Virology and Immunity, 8th ed., vol.3, Bacterial Diseases, pp. 469487 [Smith, G. R. and Easman, C. S. F., editors]. London: Edward Arnold.Google Scholar
György, P., Kuhn, R., Rose, C. S. & Zilliken, F. (1954 a). Bifidus factor. II. Its occurrence in milk from different species and in other natural products. Archives of Biochemistry and Biophysics 48, 202208.CrossRefGoogle ScholarPubMed
György, P., Norris, R. F. & Rose, C. S. (1954 b). Bifidus factor. I. A. variant of Lactobacillus bifidus requiring a special growth factor. Archives of Biochemistry and Biophysics 48, 193201.CrossRefGoogle Scholar
Haagen, I. A., Heezius, H. C., Verkooyen, R. P., Verhoef, J. & Verbrugh, H. A. (1990). Adherence of peritonitis-causing staphylococci to human peritoneal mesothelial cell monolayers. Journal of Infectious Diseases 161, 266273.CrossRefGoogle ScholarPubMed
Harel, J., Lapointe, H., Fallara, A., Lortie, L. A., Bigras-Poulin, M., Lariviére, S. & Fairbrother, J. M. (1991). Detection of genes for fimbrial antigens and enterotoxins associated with Escherichia coli serogroups isolated from pigs with diarrhea. Journal of Clinical Microbiology 29, 745752.CrossRefGoogle ScholarPubMed
Holland, R. E. (1990). Some infectious causes of diarrhea in young farm animals. Clinical Microbiology Reviews 3, 345375.CrossRefGoogle ScholarPubMed
Holmgren, J., Svennerholm, A.-M. & Lindblad, M. (1983). Receptor-like glycocompounds in human milk that inhibit classical and El Tor Vibrio cholerae cell adherence (hemagglutination). Infection and Immunity 39, 147154.CrossRefGoogle ScholarPubMed
Hoskins, L. C., Agustines, M., McKee, W. B., Boulding, E. T., Kriaris, M. & Niedermeyer, G. (1985). Mucin degradation in human colon ecosystems: isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. Journal of Clinical Investigation 75, 944953.CrossRefGoogle ScholarPubMed
Hultgren, S. J., Abraham, S., Caparon, M., Falk, P., Stgeme, J. W. & Normark, S. (1993). Pilus and nonpilus bacterial adhesins – assembly and function in cell recognition. Cell 73, 887901.CrossRefGoogle ScholarPubMed
Isaacson, R. E. & Kinsel, M. (1992). Adhesion of Salmonella typhimurium to porcine epithelial surfaces: identification and characterization of two phenotypes. Infection and Immunity 60, 31933200.CrossRefGoogle ScholarPubMed
Ito, N. & Hirota, T. (1992). Histochemical and cytochemical localization of blood group antigens. Progress in Histochemistry and Cytochemistry 25 (2), 185.CrossRefGoogle ScholarPubMed
Jayne-Williams, D. J. & Hewitt, D. (1972). The relationship between the intestinal microflora and the effects of diets containing raw navy beans (Phaseolus vulgaris) on the growth of Japanese quail. (Coturnix coturnix japonica). Journal of Applied Bacteriology 35, 331344.CrossRefGoogle ScholarPubMed
Kaku, H., Goldstein, I. J., van Damme, E. J. M. & Peumans, W. J. (1992). New mannose-specific lectins from garlic (Allium sativum) and ramsons (Allium ursinum) oulbs. Carbohydrate Research 229, 347353.CrossRefGoogle Scholar
Kapperud, G., Namork, E., Skurnik, M. & Nesbakken, T. (1987). Plasmid-mediated surface fibrillae of Yersinia pseudotuberculosis and Yersinia enterocolitica: relationship to the outer membrane protein YOP1 and possible importance for pathogenesis. Infection and Immunity 55, 22472254.CrossRefGoogle Scholar
Kehagias, C., Jao, Y. C., Mikolajcik, E. M. & Hansen, P. M. T. (1977). Growth response of Bifidobacterium bifidum to a hydrolytic product isolated from bovine casein. Journal of Food Science 42, 146150.CrossRefGoogle Scholar
Kelly, D., Begbie, R. & King, T. P. (1992). Postnatal intestinal development. In Neonatal Survival and Growth (BSAP Occasional Publication no. 15), pp. 6379 [Varley, M. A., Williams, P. E. V. and Lawrence, T. L. J., editors]. Edinburgh: British Society of Animal Production.Google Scholar
Kelly, D. & King, T. P. (1991). The influence of lactation products on the temporal expression of histo-blood group antigens in the intestines of suckling pigs: lectin histochemical and immunohistochemical analysis. Histochemical Journal 23, 5560.CrossRefGoogle ScholarPubMed
Kelly, D., King, T. P., McFadyen, M. & Coutts, A. G. P. (1993). Effect of preclosure colostrum intake on the development of the intestinal epithelium of artificially-reared piglets. Biology of the Neonate 64, 235244.CrossRefGoogle ScholarPubMed
Kervella, M., Pages, J., Pei, Z., Grollier, G., Blaser, M. J. & Fauchere, J. (1993). Isolation and characterisation of two Campylobacter glycine-extracted proteins that bind to Hela cell membranes. Infection and Immunity 61, 34403448.CrossRefGoogle ScholarPubMed
King, T. P. (1994). Lectin cytochemistry and intestinal epithelial cell biology. In Lectins: Biomedical Perspectives, pp. 000–000 [Pusztai, A., editor] (in press).Google Scholar
King, T. P., Begbie, R. & Cadenhead, A. (1983). Nutritional toxicity of raw kidney beans in pigs. Immunocytochemical and cytopathological studies on the gut and the pancreas. Journal of the Science of Food and Agriculture 34, 14041412.CrossRefGoogle ScholarPubMed
King, T. P., Begbie, R., Spencer, R. & Kelly, D. (1993). Diversity of membrane sialo-glycoconjugates in the developing porcine small intestine. Proceedings of the Nutrition Society 52, 195A.Google Scholar
King, T. P. & Kelly, D. (1990). Lectin and antibody affinity cytochemistry of intestinal goblet cells in suckling pigs. Transactions of the Royal Microscopical Society 1, 649652.Google Scholar
King, T. P. & Kelly, D. (1991). Ontogenic expression of histo-blood group antigens in the intestines of suckling pigs: lectin histochemical and immunohistochemical analysis. Histochemical Journal 23, 4354.CrossRefGoogle ScholarPubMed
Kleeman, E. G. & Klaenhammer, T. R. (1982). Adherence of Lactobacillus species to human fetal intestinal cells. Journal of Dairy Science 65, 20632069.CrossRefGoogle ScholarPubMed
Knutton, S., Lloyd, D. R., Candy, D. C. A. & McNeish, A. S. (1985). Adhesion of enterotoxigenic Escherichia coli to human small intestinal enterocytes. Infection and Immunity 48, 824831.CrossRefGoogle ScholarPubMed
Knutton, S., Lloyd, D. R. & McNeish, A. S. (1987). Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infection and Immunity 55, 6977.CrossRefGoogle ScholarPubMed
Kocourek, J. & Horejsi, V. (1983). A note on the recent discussion on definition of the term “lectin”. In Lectins: Biology, Biochemistry, Clinical Biochemistry, vol.3, pp. 36 [Bog-Hansen, T. C. and Spengler, G. A., editors]. Berlin: Walter de Gruyter.Google Scholar
Kolstø Otnæss, A.-B., Lægreid, A. & Ertresvåg, K. (1983). Inhibition of enterotoxin from Escherichia coli and Vibrio Cholerae by gangliosides from human milk. Infection and Immunity 40, 563569.CrossRefGoogle Scholar
Koshte, V. L., van Dijk, W., van der Stelt, M. E. & Aalberse, R. C. (1990). Isolation and characterization of BanLec-I, a mannoside-binding lectin from Musa paradisiac banana. Biochemical Journal 272, 721726.CrossRefGoogle ScholarPubMed
Kovar, M. G., Serdula, M. K., Marks, J. S. & Fraser, D. W. (1984). Review of the epidemiologic evidence for an association between infant feeding and infant health. Pediatrics 74 Suppl., 615638.CrossRefGoogle ScholarPubMed
Kraehenbuhl, J. P. & Neutra, M. R. (1992). Molecular and cellular basis of immune protection of mucosal surfaces. Physiological Reviews 72, 853879.CrossRefGoogle ScholarPubMed
Krogfelt, K. A., McCormick, B. A., Burghoff, R. L., Laux, D. C. & Cohen, P. S. (1991). Expression of Escherichia coli F-18 type 1 fimbriae in the streptomycin-treated mouse large intestine. Infection and Immunity 59, 15671568.CrossRefGoogle ScholarPubMed
Labarriere, N., Piau, J. P., Zennadi, R., Blanchardie, P., Denis, M. & Lustenberger, P. (1993). Retinoic acid modulation of α1,2-fucosyltransferase activity and sensitivity of tumor cells to LAK-mediated cytotoxicity. In Vitro Cellular and Developmental Biology 29, 140144.CrossRefGoogle Scholar
Langkamp-Henken, B., Glezer, J. A. & Kudsk, K. A. (1992). Immunologic structure and function of the gastrointestinal tract. Nutrition in Clinical Practice 7, 100108.CrossRefGoogle ScholarPubMed
Laux, D. C., McSweegan, E. F., Williams, T. J., Wadolkowski, E. A. & Cohen, P. S. (1986). Identification and characterization of mouse small intestine mucosal receptors for Escherichia coli K-12(K88ab). Infection and Immunity 52, 1825.CrossRefGoogle ScholarPubMed
Leffler, H. & Svanborg-Edén, C. (1986). Glycolipids as receptors for Escherichia coli lectins or adhesins. In Microbial Lectins and Agglutinins: Properties and Biological Activity, pp. 83111 [Mirelman, D., editor]. New York: Wiley.Google Scholar
Lelwala-Guruge, J., Ascencio, F., Ljungh, A. & Wadström, T. (1993). Rapid detection and characterization of sialic acid-specific lectins of Helicobacter pylori. Acta Pathologica Microbiologica et Immunologica Scandinavica 101, 695702.CrossRefGoogle ScholarPubMed
Lelwala-Guruge, J., Ljungh, A. & Wadström, T. (1992). Haemagglutination patterns of Helicobacter pylori, Frequency of sialic acid-specific and non-sialic acid-specific haemagglutinins. Acta Pathologica Microbiologica et Immunologica Scandinavica 100, 908913.CrossRefGoogle ScholarPubMed
Lindahl, M., Brossmer, R. & Wadström, T. (1987). Carbohydrate receptor specificity of K99 fimbriae of enterotoxigenic Escherichia coli. Glycoconjugate Journal 4, 5158.CrossRefGoogle Scholar
Lindahl, M. & Wadström, T. (1986). Binding to erythrocyte membrane glycoproteins and carbohydrate specificity of F41 fimbriae of enterotoxigenic Escherichia coli. FEMS Microbiology Letters 34, 297300.CrossRefGoogle Scholar
Linton, A. H. & Hinton, M. H. (1990). The normal microbiota of the body. In Topley & Wilson's Principles of Bacteriology, Virology and Immunity, 8th ed., vol. 1, General Microbiology and Immunity, pp. 311329 [Linton, A. H. and Dick, H. M., editors]. London: Edward Arnold.Google Scholar
Lockman, H. A. & Curtiss, R. (1992). Virulence of non-type 1-fimbriated and nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid fever. Infection and Immunity 60, 491496.CrossRefGoogle ScholarPubMed
Mantle, M. & Husar, S. D. (1993). Adhesion of Yersinia enterocolitica to purified rabbit and human intestinal mucin. Infection and Immunity 61, 23402346.CrossRefGoogle ScholarPubMed
Mantle, M. & Rombough, C. (1993). Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica. Infection and Immunity 61, 41314138.CrossRefGoogle ScholarPubMed
Martin, A., Biol, M. C. & Louisot, P. (1989). Intestinal glycosyltransferase activities: nutritional regulation by the quantity of dietary proteins. Biochemical Archives 5, 297308.Google Scholar
Maxwell, F. J. & Stewart, C. S. (1994). The microbiology of the gut and the role of probiotics. In The Neonatal Pig: Development and Survival, pp. 000–000 [Varley, M., editor]. Wallingford, Oxon: CAB International (in press).Google Scholar
Mayra-Makinen, A., Manninen, M. & Gyllenberg, H. (1983). The adherence of lactic acid bacteria to the columnar epithelial cells of pigs and calves. Journal of Applied Bacteriology 55, 241245.CrossRefGoogle Scholar
Metcalfe, J. W., Krogfelt, K. A., Krivan, H. C., Cohen, P. S. & Laux, D. C. (1991). Characterization and identification of a porcine small intestine mucus receptor for the K88ab fimbrial adhesin. Infection and Immunity 59, 9196.CrossRefGoogle ScholarPubMed
Metchnikoff, E. (1907). The Prolongation of Life: Optimistic Studies. London: Heinemann.Google Scholar
Michiels, T., Wattiau, P., Brasseur, R., Ruysschaert, J.-M. & Cornelis, G. R. (1990). Secretion of Yop proteins by Yersinia. Infection and Immunity 58, 28402849.CrossRefGoogle Scholar
Mo, H. Q., van Damme, E. J. M., Peumans, W. J. & Goldstein, I. J. (1993). Purification and characterization of a mannose-specific lectin from shallot (Allium ascalonicum) bulbs. Archives of Biochemistry 306, 431438.CrossRefGoogle ScholarPubMed
Moreau, M.-C., Thomasson, M., Ducluzeau, R. & Raibaud, P. (1986). [Kinetics of bacterial colonization in the human neonate in relation to the kind of milk.] Reproduction, Nutrition, Dévelopment 26, 745753.CrossRefGoogle Scholar
Morris, J. A., Thorns, C. J. & Sojka, W. J. (1980). Evidence for two adhesive antigens on the K99 reference strain Escherichia coli B41. Journal of General Microbiology 118, 107113.Google ScholarPubMed
Moughan, P. J., Birtles, M. J., Cranwell, P. D., Smith, W. C. & Pedraza, M. (1992). The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Review of Nutrition and Dietetics 67, 40113.CrossRefGoogle Scholar
Mouricout, M. (1991). Swine and cattle enterotoxigenic Escherichia coli-mediated diarrhoea. Development of therapies based on inhibition of bacteria-host interactions. European Journal of Epidemiology 7, 588604.CrossRefGoogle ScholarPubMed
Mouricout, M., Petit, J. M., Carias, J. R. & Julien, R. (1990). Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: treatment of experimental colibacillosis. Infection and Immunity 58, 98106.CrossRefGoogle ScholarPubMed
Nachbar, M. S. & Oppenheim, J. D. (1980). Lectins in the United States diet: a survey of lectins in commonly consumed foods and a review of the literature. American Journal of Clinical Nutrition 33, 23382345.CrossRefGoogle Scholar
Nagy, B., Arp, L. H., Moon, H. W. & Casey, T. A. (1992). Colonization of the small intestine of weaned pigs by enterotoxigenic Escherichia coli that lack known colonization factors. Veterinary Pathology 29, 239246.CrossRefGoogle ScholarPubMed
Neeser, J.-R., Chambaz, A., Golliard, M., Link-Amster, H., Fryder, V. & Kolodziejczyk, E. (1989). Adhesion of colonization factor antigen II-positive enterotoxigenic Escherichia coli strains to human enterocytelike differentiated HT-29 cells: a basis for host-pathogen interactions in the gut. Infection and Immunity 57, 37273734.CrossRefGoogle ScholarPubMed
Neeser, J.-R., Koellreutter, B. & Wuersch, P. (1986). Oligomannoside-type glycopeptides inhibiting adhesion of Escherichia coli strains mediated by type 1 pili; preparation of potent inhibitors from plant glycoproteins. Infection and Immunity 52, 428436.CrossRefGoogle ScholarPubMed
Neutra, M. R. & Forstner, J. F. (1987). Gastrointestinal mucus:synthesis, secretion, and function. In Physiology of the Gastrointestinal Tract, 2nd ed., pp. 9751009 [Johnson, L. R., editor]. New York: Raven Press.Google Scholar
Nichols, J. H., Bezkorovainy, A. & Paque, R. (1975). Isolation and characterization of several glycoproteins from human colostrum whey. Biochimica et Biophysica Acta 412, 99108.CrossRefGoogle ScholarPubMed
Nilsson, G. & Svensson, S. (1983). The role of the carbohydrate portion of glycolipids for the adherence of Escherichia coli K88+ to pig intestine. In Proceedings of the 7th International Symposium on GlycoconjugatesLund-RonnebySweden, pp. 637638 [Chester, M. A., Heinegerd, D.Lundbald, A. and Svensson, S., editors].Google Scholar
Ofek, I. & Doyle, R. J. (1994). Bacterial Adhesion to Cells and Tissues, pp. 397400. London: Chapman and Hall.CrossRefGoogle Scholar
Ofek, I. & Sharon, N. (1990). Adhesins as lectins: specificity and role in infection. Current Topics in Microbiology and Immunology 151, 91113.Google ScholarPubMed
Oriol, R. (1987). Tissular expression of ABH and Lewis antigens in humans and animals: expected value of different animal models in the study of ABO-incompatible organ transplants. Transplantation Proceedings 19, 44164420.Google Scholar
Oyofo, B. A., De Loach, J. R., Corrier, D. E., Norman, J. O., Ziprin, R. L. & Mollenhauer, H. H. (1989). Prevention of Salmonella typhimurium colonization of broilers with D-mannose. Poultry Science 68, 13571360.CrossRefGoogle ScholarPubMed
Pærregaard, A., Espersen, F., Jensen, O. M. & Skurnik, M. (1991). Interactions between Yersinia enterocolitica and rabbit ileal mucus: growth, adhesion, penetration, and subsequent changes in surface hydrophobicity and ability to adhere to ileal brush border membrane vesicles. Infection and Immunity 59, 253260.CrossRefGoogle ScholarPubMed
Payne, D., O'Reilly, M. & Williamson, D. (1993). The K88 fimbrial adhesin of enterotoxigenic Escherichia coli binds to β1-linked galactosyl residues in glycosphingolipids. Infection and Immunity 61, 36733677.CrossRefGoogle Scholar
Pedersen, K. & Tannock, G. W. (1989). Colonization of the porcine gastrointestinal tract by lactobacilli. Applied and Environmental Microbiology 55, 279283.CrossRefGoogle ScholarPubMed
Poxton, I. R. & Arbuthnott, J. P. (1990). Determinants of bacterial virulence. In Topley & Wilson's Principles of Bacteriology, Virology and Immunity, 8th, ed., vol. 1, General Microbiology and Immunity, pp. 331353 [Linton, A. H. and Dick, H. M., editors]. London: Edward Arnold.Google Scholar
Prizont, R. (1982). Degradation of intestinal glycoproteins by pathogenic Shigella flexneri. Infection and Immunity 36, 615620.CrossRefGoogle ScholarPubMed
Pusztai, A. (1993). Review, Dietary lectins are metabolic signals for the gut and modulate immune and hormone functions. European Journal of Clinical Nutrition 47, 691699.Google ScholarPubMed
Pusztai, A., Grant, G., King, T. P. & Clarke, E. M. W. (1990). Chemical probiosis. In Recent Advances in Animal Nutrition, pp. 4760 [Haresign, W. and Cole, D. J. A., editors]. London: Butterworths.CrossRefGoogle Scholar
Pusztai, A., Grant, G., Spencer, R. J., Duguid, T. J.Brown, D. S., Ewen, S. W. B., Peumans, W. J., van Damme, E. J. M. & Bardocz, S. (1993). Kidney bean lectin-induced Escherichia coli overgrowth in the small intestine is blocked by GNA, a mannose-specific lectin. Journal of Applied Bacteriology 75, 360368.CrossRefGoogle ScholarPubMed
Rattray, E. A. S., Palmer, R. & Pusztai, A. (1974). Toxicity of kidney beans (Phaseolus vulgaris L.) to conventional and gnotobiotic rats. Journal of the Science of Food and Agriculture 25, 10351040.CrossRefGoogle ScholarPubMed
Rose, S. J. (1984). Bacterial flora of breast-fed infants. Pediatrics 74, 563.CrossRefGoogle ScholarPubMed
Runnels, P. L., Moon, H. W. & Schneider, R. A. (1980). Development of resistance with host age to adhesion of K99+ Escherichia coli to isolated intestinal epithelial cells. Infection and Immunity 28, 298300.CrossRefGoogle ScholarPubMed
Ruseler-van Embden, J. G. H., Schouten, W. R., van Lieshout, L. M. C. & Auwerda, H. J. A. (1992). Changes in bacterial composition and enzymatic activity in ileostomy and ileal reservoir during intermittent occlusion: a study using dogs. Applied and Environmental Microbiology 58, 111118.CrossRefGoogle ScholarPubMed
Saitoh, T., Natomi, H., Zhao, W., Okuzumi, K., Sugano, K., Iwamori, M. & Nagai, Y. (1991). Identification of glycolipid receptors for Helicobacter pylori by TLC-immunostaining. FEBS Letters 282, 385387.CrossRefGoogle ScholarPubMed
Sajjan, S. U. & Forstner, J. F. (1990 a). Characteristics of binding of Escherichia coli serotype O157:H7 strain CL-49 to purified intestinal mucin. Infection and Immunity 58, 860867.CrossRefGoogle ScholarPubMed
Sajjan, S. U. & Forstner, J. F. (1990 b). Role of the putative “link” glycopeptide of intestinal mucin in binding of piliated Escherichia coli serotype O157:H7 strain CL-49. Infection and Immunity 58, 868873.CrossRefGoogle ScholarPubMed
Schengrund, C.-L. & Ringler, N. J. (1989). Binding of Vibrio Cholera toxin and the heat-labile enterotoxin of Escherichia coli to Gmi derivatives of Gmi and non-lipid oligosaccharide polyvalent ligands. Journal of Biological Chemistry 264, 1323313237.CrossRefGoogle Scholar
Seignole, D., Mouricout, M., Duval-Iflah, Y., Quintard, B. & Julien, R. (1991). Adhesion of K99 fimbriated Escherichia coli to pig intestinal epithelium: correlation of adhesive and non-adhesive phenotypes with the sialoglycolipid content. Journal of General Microbiology 137, 15911601.CrossRefGoogle ScholarPubMed
Sellwood, R. (1979). Escherichia coli diarrhoea in pigs with or without the K88 receptor. Veterinary Record 105, 228230.CrossRefGoogle ScholarPubMed
Sellwood, R. (1980). The interaction of the K88 antigen with porcine intestinal epithelial cell brush borders. Biochimica et Biophysica Acta 632, 326335.CrossRefGoogle ScholarPubMed
Sellwood, R. (1984). The K88 adherent system in swine. In Attachment of Organisms to the Gut Mucosa, vol. 1, pp. 2129 [Boedeker, E. C., editor]. Boca Raton, FL: CRC Press.Google Scholar
Sharon, N., Eshdat, Y., Silverblatt, F. J. & Ofek, I. (1981). Bacterial adherence to cell surface sugars. In Adhesion and Micro-organisms Pathogenicity, pp. 119141 [Elliot, K., O'Connor, M. and Whelan, J., editors]. London: Pitman Press.Google Scholar
Silk, D. B. A. & Grimble, G. K. (1994). Introduction. Gut Suppl. 1, VVI.CrossRefGoogle Scholar
Simhon, A., Douglas, J. R., Drasar, B. S. & Soothill, J. F. (1982). Effect of feeding on infants' faecal flora. Archives of Disease in Childhood 57, 5458.Google ScholarPubMed
Sokurenko, E. V., Courtney, H. S., Abraham, S. N., Klemm, P. & Hasty, D. L. (1992). Functional heterogeneity of type-1 fimbriae of Escherichia coli. Infection and Immunity 60, 47094719.CrossRefGoogle ScholarPubMed
Specian, R. D. & Oliver, M. G. (1991). Functional biology of intestinal goblet cells. American Journal of Physiology 260, C183C193.CrossRefGoogle ScholarPubMed
Spitz, J., Hecht, G., Taveras, M., Aoys, E. & Alverdy, J. (1994). The effect of dexamethasone administration on rat intestinal permeability: the role of bacterial adherence. Gastroenterology 106, 3541.CrossRefGoogle ScholarPubMed
Springer, G. F., Rose, C. S. & György, P. (1954). Blood-group mucoids: distribution and growth promoting properties for Lactobacillus bifidus var. pennsylvanicus. Journal of Laboratory and Clinical Medicine 43, 532542.Google Scholar
Stewart, C., Hillman, K., Maxwell, F., Kelly, D. & King, T. P. (1993). Recent advances in probiosis in pigs: observations on the microbiology of the pig gut. In Recent Advances in Animal Nutrition, pp. 197219 [Garnsworthy, P. C. and Cole, D. J. A. editors]. Nottingham: Nottingham University Press.Google Scholar
Stoll, B. J., Holmgren, J., Bardhan, P. K., Hug, I., Greenhough, W. B., Fredman, P. & Svennerholm, L. (1980). Binding of intraluminal toxin in cholera: trial of Gm1 ganglioside charcoal. Lancet 2, 888891.CrossRefGoogle ScholarPubMed
Strous, G. J. & Dekker, J. (1992). Mucin-type glycoproteins. CRC Critical Reviews in Biochemistry and Molecular Biology 27, 5792.CrossRefGoogle ScholarPubMed
Surawicz, C. M., McFarland, L. V., Elmer, G. & Chinn, J. (1989). Treatment of recurrent Clostridium difficile colitis with vancomycin and Saccharomyces boulardii. American Journal of Gastroenterology 84, 12851287.Google ScholarPubMed
Taatjes, D. J. & Roth, J. (1990). Selective loss of sialic acid from rat small intestinal epithelial cells during postnatal development: demonstration with lectin-gold techniques. European Journal of Cell Biology 53, 255266.Google ScholarPubMed
Tannock, G. W. (1992). The lactic microflora of pigs, mice and rats. In The Lactic Acid Bacteria, vol. 1, The Lactic Acid Bacteria in Health and Disease, pp. 2148 [Wood, B. J. B, editor]. London: Elsevier Applied Science.CrossRefGoogle Scholar
Teneberg, S., Willemsen, P. T. J., de Graaf, F. K. & Karlsson, K.-A. (1990). Receptor-active glycolipids of epithelial cells of the small intestine of young and adult pigs in relation to susceptibility to infection with Escherichia coli K99. FEBS Letters 263, 1014.CrossRefGoogle Scholar
Teneberg, S., Willemsen, P. T. J., de Graaf, F. K. & Karlsson, K.-A. (1993). Calf small intestine receptors for K99 fimbriated enterotoxigenic Escherichia coli. FEMS Microbiology Letters 109, 107112.CrossRefGoogle ScholarPubMed
Terada, A., Hara, H., Kataoka, M. & Mitsuoka, T. (1992). Effect of lactulose on the composition and metabolic activity of the human faecal flora. Microbial Ecology in Health and Disease 5, 4350.CrossRefGoogle Scholar
Thorns, C. J., Sojka, M. G. & Chasey, D. (1990). Detection of a novel fimbrial structure on the surface of Salmonella enteritidis by using a monoclonal antibody. Journal of Clinical Microbiology 28, 24092414.CrossRefGoogle ScholarPubMed
Turck, D., Feste, A. S. & Lifschitz, C. H. (1993). Age and diet affect the composition of porcine colonic mucins. Pediatric Research 33, 564567.CrossRefGoogle ScholarPubMed
Untawale, G. G., Pietraszek, A. & McGinnis, J. (1978). Effect of diet on adhesion and invasion of microflora in the intestinal mucosa of chicks. Proceedings of the Society for Experimental Biology and Medicine 159, 276280.CrossRefGoogle ScholarPubMed
van Driessche, E., Charlier, G., Schoup, J., Beeckmans, S., Pohl, P., Lintermans, P. & Kanarek, L. (1989). The effect of lectins and monosaccharides on the in vitro attachment of E. coli F17+ to intestinal calf villi and immobilized glycoproteins. In Recent Advances of Research in Antinutritional Factors in Legume Seeds, pp. 4348 [Huisman, J., van der Poel, T. F. B. and Liener, I. E., editors]. Wageningen: Pudoc.Google Scholar
Wanke, C. A., Cronan, S., Gross, C., Chadee, K. & Guerrant, R. L. (1990). Characterization of binding of Escherichia coli strains which are enteropathogens to small-bowed mucin. Infection and Immunity 58, 794800.CrossRefGoogle Scholar
Wick, M. J., Madara, J. L., Fields, B. N. & Normark, S. J. (1991). Molecular cross talk between epithelial cells and pathogenic microorganisms. Cell 67, 651659.CrossRefGoogle ScholarPubMed
Willemsen, P. T. J. & de Graaf, F. K. (1992). Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microbial Pathogenesis 12, 367375.CrossRefGoogle ScholarPubMed
Willis, A. T., Bullen, C. L., Williams, K., Fagg, C. G., Bourne, A. & Vignon, M. (1973). Breast milk substitute: a bacteriological study. British Medical Journal 4, 6772.CrossRefGoogle ScholarPubMed
Wilson, A. B., King, T. P., Clarke, E. M. W. & Pusztai, A. (1980). Kidney bean (Phaseolus vulgaris) lectin-induced lesions in the rat small intestine. II. Microbiological studies. Journal of Comparative Pathology 90, 597602.CrossRefGoogle Scholar
Winner, L. S., Mack, J., Weltzin, R. A., Mekalanos, J. J., Kraehenbuhl, J.-P. & Neutra, M. R. (1991). New model for analysis of mucosal immunity: intestinal secretion of specific monoclonal immunoglobulin A from hybridoma tumors protects against Vibrio cholerae infection. Infection and Immunity 59, 977982.CrossRefGoogle ScholarPubMed
Yuyama, Y., Yoshimatsu, K., Ono, E., Saito, M. & Naiki, M. (1993). Postnatal change of pig intestinal ganglioside bound by Escherichia coli with K99 fimbriae. Journal of Biochemistry 113, 488492.CrossRefGoogle ScholarPubMed
Zilliken, F., Smith, P. N., Tomarelli, R. M. & György, P. (1955). 4-O-β-D-Galactopyranosyl-N-acetyl-D-glucosamine in hog mucin. Archives of Biochemistry and Biophysics 54, 398405.CrossRefGoogle ScholarPubMed