Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T01:01:40.676Z Has data issue: false hasContentIssue false

The gut microbiota as a therapeutic target for obesity: a scoping review

Published online by Cambridge University Press:  08 June 2021

Stephanie Santos-Paulo*
Affiliation:
University of Oxford, Medical Sciences Division, John Radcliffe Hospital, Oxford, United Kingdom
Samuel P. Costello
Affiliation:
Queen Elizabeth Hospital, Department of Gastroenterology, Adelaide, SA, Australia The University of Adelaide Faculty of Health Sciences, School of Medicine, Adelaide, SA, Australia
Samuel C. Forster
Affiliation:
Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Clayton, VIC, Australia Monash University, Department of Molecular and Translational Sciences, Clayton, VIC, Australia
Simon P. Travis
Affiliation:
Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
Robert V. Bryant
Affiliation:
Queen Elizabeth Hospital, Department of Gastroenterology, Adelaide, SA, Australia The University of Adelaide Faculty of Health Sciences, School of Medicine, Adelaide, SA, Australia
*
*Corresponding author: Stephanie Santos-Paulo; email: stephanie.santos-paulo@gtc.ox.ac.uk

Abstract

There is mounting evidence that microbiome composition is intimately and dynamically connected with host energy balance and metabolism. The gut microbiome is emerging as a novel target for counteracting the chronically positive energy balance in obesity, a disease of pandemic scale which contributes to >70 % of premature deaths. This scoping review explores the potential for therapeutic modulation of gut microbiota as a means of prevention and/or treatment of obesity and obesity-associated metabolic disorders. The evidence base for interventional approaches which have been shown to affect the composition and function of the intestinal microbiome is summarised, including dietary strategies, oral probiotic treatment, faecal microbiota transplantation and bariatric surgery. Evidence in this field is still largely derived from preclinical rodent models, but interventional studies in obese populations have demonstrated metabolic improvements effected by microbiome-modulating treatments such as faecal microbiota transplantation, as well as drawing attention to the unappreciated role of microbiome modulation in well-established anti-obesity interventions, such as dietary change or bariatric surgery. The complex relationship between microbiome composition and host metabolism will take time to unravel, but microbiome modulation is likely to provide a novel strategy in the limited armamentarium of effective treatments for obesity.

Type
Review Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rosenbaum, M, Knight, R & Leibel, RL (2015) The gut microbiota in human energy homeostasis and obesity. Trends Endocrin Metab 26, 493501. doi: 10.1016/j.tem.2015.07.002 CrossRefGoogle ScholarPubMed
Fetissov, SO (2017) Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 13, 1125. doi: 10.1038/nrendo.2016.150 CrossRefGoogle ScholarPubMed
Tehrani, AB, Nezami, BG, Gewirtz, A & Srinivasan, S (2012) Obesity and its associated disease: a role for microbiota? Neurogastroenterol Motil 24, 305311. doi: 10.1111/j.1365-2982.2012.01895.x CrossRefGoogle ScholarPubMed
Louis, P, Hold, GL & Flint, HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12, 661672. doi: 10.1038/nrmicro3344 CrossRefGoogle ScholarPubMed
Turnbaugh, PJ, Ley, RE, Mahowald, MA, Magrini, V, Mardis, ER & Gordon, JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 10271031. doi: 10.1038/nature05414 CrossRefGoogle ScholarPubMed
Bäckhed, F, Ley, RE, Sonnenburg, JL, Peterson, DA & Gordon, JI (2005) Host-bacterial mutualism in the human intestine. Science 307, 19151920. doi: 10.1126/science.1104816 Google ScholarPubMed
Bäckhed, F, Ding, H, Wang, T, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101, 1571815723. doi: 10.1073/pnas.0407076101 CrossRefGoogle ScholarPubMed
Tschöp, MH, Hugenholtz, P & Karp, CL (2009) Getting to the core of the gut microbiome. Nat Biotechnol 27, 344346. doi: 10.1038/nbt0409-344 CrossRefGoogle Scholar
Blüher, M (2019) Obesity: global epidemiology and pathogenesis.Google Scholar
Sonnenburg, JL & Bäckhed, F (2016) Diet–microbiota interactions as moderators of human metabolism. Nature 535, 5664. doi: 10.1038/nature18846 CrossRefGoogle ScholarPubMed
Sonnenburg, JL, Xu, J, Leip, DD, et al. (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955. doi: 10.1126/science.1109051 CrossRefGoogle ScholarPubMed
Degirolamo, C, Rainaldi, S, Bovenga, F, Murzilli, S & Moschetta, A (2014) Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep 7, 1218. doi: 10.1016/j.celrep.2014.02.032 CrossRefGoogle ScholarPubMed
Khoruts, A & Sadowsky, MJ (2016) Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 13, 508516. doi: 10.1038/nrgastro.2016.98 CrossRefGoogle ScholarPubMed
Ridaura, VK, Faith, JJ, Rey, FE, et al. (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214. doi: 10.1126/science.1241214 CrossRefGoogle ScholarPubMed
Liou, AP, Paziuk, M, Luevano, J-M, Machineni, S, Turnbaugh, PJ & Kaplan, LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Trans Med 5, 178ra41. doi: 10.1126/scitranslmed.3005687 CrossRefGoogle ScholarPubMed
Zhang, H, DiBaise, JK, Zuccolo, A, et al. (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106, 23652370. doi: 10.1073/pnas.0812600106 CrossRefGoogle ScholarPubMed
Cox Laura, M, Yamanishi, S, Sohn, J, et al. (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705721. doi: 10.1016/j.cell.2014.05.052 Google Scholar
Cox, LM & Blaser, MJ (2015). Antibiotics in early life and obesity. Nat Rev Endocrinol 11, 182190. doi: 10.1038/nrendo.2014.210 CrossRefGoogle ScholarPubMed
Turnbaugh, PJ, Bäckhed, F, Fulton, L & Gordon, JI (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213223. doi: 10.1016/j.chom.2008.02.015 CrossRefGoogle ScholarPubMed
Ley, RE, Bäckhed, F, Turnbaugh, P, Lozupone, CA, Knight, RD & Gordon, JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 11070. doi: 10.1073/pnas.0504978102 CrossRefGoogle ScholarPubMed
Turnbaugh, PJ, Hamady, M, Yatsunenko, T, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457, 480484. doi: 10.1038/nature07540 CrossRefGoogle ScholarPubMed
Finucane, MM, Sharpton, TJ, Laurent, TJ & Pollard, KS (2014) A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One 9, e84689. doi: 10.1371/journal.pone.0084689 CrossRefGoogle Scholar
Arumugam, M, Raes, J, Pelletier, E, et al. (2011) Enterotypes of the human gut microbiome. Nature 473, 174180. doi: 10.1038/nature09944 CrossRefGoogle ScholarPubMed
Huttenhower, C, Gevers, D, Knight, R, et al. (2012) Structure, function and diversity of the healthy human microbiome. Nature 486, 207214. doi: 10.1038/nature11234 Google Scholar
Ley, RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26, 511. doi: 10.1097/MOG.0b013e328333d751 CrossRefGoogle ScholarPubMed
Haro, C, Rangel-Zúñiga, OA, Alcalá-Díaz, JF, et al. (2016) Intestinal microbiota is influenced by gender and body mass index. PLoS One 11, e0154090e0154090. doi: 10.1371/journal.pone.0154090 CrossRefGoogle ScholarPubMed
Castaner, O, Goday, A, Park, YM, et al. (2018) The gut microbiome profile in obesity: a systematic review. Int J Endocrinol 2018, 4095789. doi: 10.1155/2018/4095789 Google ScholarPubMed
Al-Asmakh, M & Zadjali, F (2015) Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol 25, 15831588. doi: 10.4014/jmb.1501.01039 CrossRefGoogle ScholarPubMed
Round, JL & Mazmanian, SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9, 313323. doi: 10.1038/nri2515 CrossRefGoogle Scholar
Maier, BR & Hentges, DJ (1972) Experimental Shigella infections in laboratory animals. I. Antagonism by human normal flora components in gnotobiotic mice. Infect Immun 6, 168173. doi: 10.1128/IAI.6.2.168-173.1972 CrossRefGoogle ScholarPubMed
Zachar, Z & Savage, DC (1979) Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. Infect Immun 1979, 23, 168174. doi: 10.1128/IAI.23.1.168-174.1979 CrossRefGoogle ScholarPubMed
Gregor, MF & Hotamisligil, GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29, 415445. doi: 10.1146/annurev-immunol-031210-101322 CrossRefGoogle ScholarPubMed
Boulangé, CL, Neves, AL, Chilloux, J, Nicholson, JK & Dumas, M-E (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8, 42. doi: 10.1186/s13073-016-0303-2 CrossRefGoogle ScholarPubMed
Cani, PD, Amar, J, Iglesias, MA, et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761. doi: 10.2337/db06-1491 CrossRefGoogle ScholarPubMed
de La Serre, CB, Ellis, CL, Lee, J, Hartman, AL, Rutledge, JC & Raybould, HE (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299, G440G448. doi: 10.1152/ajpgi.00098.2010 CrossRefGoogle ScholarPubMed
Harte, AL, Varma, MC, Tripathi, G, et al. (2012) High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care 35, 375382. doi: 10.2337/dc11-1593 CrossRefGoogle ScholarPubMed
Cani, PD, Bibiloni, R, Knauf, C, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 14701481. doi: 10.2337/db07-1403 CrossRefGoogle ScholarPubMed
Membrez, M, Blancher, F, Jaquet, M, et al. (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. Faseb J 22, 24162426. doi: 10.1096/fj.07-102723 CrossRefGoogle ScholarPubMed
Shi, H, Kokoeva, MV, Inouye, K, Tzameli, I, Yin, H & Flier, JS (2006) TLR4 links innate immunity and fatty acid–induced insulin resistance. J Clin Invest 116, 30153025. doi: 10.1172/JCI28898 CrossRefGoogle ScholarPubMed
Maslowski, KM, Vieira, AT, Ng, A, et al. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 12821286. doi: 10.1038/nature08530 CrossRefGoogle ScholarPubMed
de Git, KC & Adan, RA (2015) Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev 16, 207224. doi: 10.1111/obr.12243 CrossRefGoogle ScholarPubMed
Walter, J, Armet, AM, Finlay, BB, Shanahan, F (2020) Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221232. doi:https://doi.org/10.1016/j.cell.2019.12.025 CrossRefGoogle ScholarPubMed
Bested, AC, Logan, AC, Selhub, EM (2013) Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part I – autointoxication revisited. Gut Pathog 5, 5. doi: 10.1186/1757-4749-5-5 CrossRefGoogle ScholarPubMed
Herter, CA & Kendall, AI (1910) The influence of dietary alterations on the types of intestinal flora. J Biol Chem 7, 203236.CrossRefGoogle Scholar
Sonnenburg, ED & Sonnenburg, JL (2019) The ancestral and industrialized gut microbiota and implications for human health. Nat Rev Microbiol 17, 383390. doi: 10.1038/s41579-019-0191-8 CrossRefGoogle ScholarPubMed
Cordain, L, Eaton, SB, Sebastian, A, et al. (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81, 341354. doi: 10.1093/ajcn.81.2.341 CrossRefGoogle ScholarPubMed
Yatsunenko, T, Rey, FE, Manary, MJ, et al. (2012) Human gut microbiome viewed across age and geography. Nature 486, 222227. doi: 10.1038/nature11053 Google ScholarPubMed
Daïen, CI, Pinget, GV, Tan, JK & Macia, L (2017). Detrimental impact of microbiota-accessible carbohydrate-deprived diet on gut and immune homeostasis: an overview. Front Immunol 8, 548548. doi: 10.3389/fimmu.2017.00548 CrossRefGoogle ScholarPubMed
Sonnenburg Erica, D & Sonnenburg Justin, L (2014). Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 20, 779786. doi:https://doi.org/10.1016/j.cmet.2014.07.003 CrossRefGoogle Scholar
Smits, SA, Leach, J, Sonnenburg, ED, et al. (2017) Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science (New York, NY) 357, 802806. doi: 10.1126/science.aan4834 CrossRefGoogle ScholarPubMed
Clemente, JC, Pehrsson, EC, Blaser, MJ, et al. (2015) The microbiome of uncontacted Amerindians. Sci Adv 1, e1500183. doi: 10.1126/sciadv.1500183 CrossRefGoogle ScholarPubMed
Blaser, MJ (2017). The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol 17, 461463. doi: 10.1038/nri.2017.77 CrossRefGoogle ScholarPubMed
de la Cuesta-Zuluaga, J, Corrales-Agudelo, V, Velásquez-Mejía, EP, Carmona, JA, Abad, JM & Escobar, JS (2018) Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization. Sci Rep 8, 11356. doi: 10.1038/s41598-018-29687-x CrossRefGoogle Scholar
Sonnenburg, ED, Smits, SA, Tikhonov, M, Higginbottom, SK, Wingreen, NS & Sonnenburg, JL (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212215. doi: 10.1038/nature16504 CrossRefGoogle ScholarPubMed
Martens, EC (2016) Microbiome: fibre for the future. Nature 529, 158158. doi: 10.1038/529158a CrossRefGoogle ScholarPubMed
Ley, RE, Turnbaugh, PJ, Klein, S & Gordon, JI (2006). Human gut microbes associated with obesity. Nature 444, 10221023. doi: 10.1038/4441022a CrossRefGoogle ScholarPubMed
Walker, AW, Ince, J, Duncan, SH, et al. (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5, 220230. doi: 10.1038/ismej.2010.118 CrossRefGoogle ScholarPubMed
Stunkard, AJ, Foch, TT & Hrubec, Z (1986). A twin study of human obesity. JAMA 256, 5154. doi: 10.1001/jama.1986.03380010055024 Google ScholarPubMed
Shepherd, ES, DeLoache, WC, Pruss, KM, Whitaker, WR, Sonnenburg, JL (2018). An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434438. doi: 10.1038/s41586-018-0092-4 CrossRefGoogle ScholarPubMed
Suez, J, Zmora, N, Segal, E & Elinav, E (2019) The pros, cons, and many unknowns of probiotics. Nat Med 25, 716729. doi: 10.1038/s41591-019-0439-x CrossRefGoogle ScholarPubMed
Kadooka, Y, Sato, M, Imaizumi, K, et al. (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nut 64, 636643. doi: 10.1038/ejcn.2010.19 Google ScholarPubMed
Giordano, A, Frontini, A & Cinti, S (2016). Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov 15, 405.CrossRefGoogle ScholarPubMed
Osterberg, KL, Boutagy, NE, McMillan, RP, et al. (2015) Probiotic supplementation attenuates increases in body mass and fat mass during high-fat diet in healthy young adults. Obesity (Silver Spring) 23, 23642370. doi: 10.1002/oby.21230 CrossRefGoogle ScholarPubMed
Borgeraas, H, Johnson, LK, Skattebu, J, Hertel, JK & Hjelmesaeth, J (2018). Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. Obes Rev 19, 219232. doi: 10.1111/obr.12626 CrossRefGoogle ScholarPubMed
Crovesy, L, Ostrowski, M, Ferreira, D, Rosado, EL & Soares-Mota, M (2017). Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. Int J Obes (Lond) 41, 16071614. doi: 10.1038/ijo.2017.161 CrossRefGoogle ScholarPubMed
Gupta, S, Allen-Vercoe, E & Petrof, EO (2015). Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol 9, 229239. doi: 10.1177/1756283X15607414 CrossRefGoogle Scholar
Cuevas-Sierra, A, Ramos-Lopez, O, Riezu-Boj, JI, Milagro, FI & Martinez, JA (2019) Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv Nut 10(Suppl. 1), S17S30. doi: 10.1093/advances/nmy078 CrossRefGoogle ScholarPubMed
Pedersen, O, Clément, K & Gewirtz, A (2013) Slimming down via the microbiota. Nat Med 19, 13741375. doi: 10.1038/nm.3398 Google ScholarPubMed
Vrieze, A, Van Nood, E, Holleman, F, et al. (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913916.e7. doi: 10.1053/j.gastro.2012.06.031 CrossRefGoogle ScholarPubMed
Gao, Z, Yin, J, Zhang, J, et al. (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509. doi: 10.2337/db08-1637 CrossRefGoogle ScholarPubMed
Kootte, RS, Levin, E, Salojärvi, J, et al. (2017) Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 26, 611619.e6. doi: 10.1016/j.cmet.2017.09.008 CrossRefGoogle ScholarPubMed
Greenhill, C (2017) Microbiota: FMT transiently improves insulin sensitivity. Nat Rev Endocrinol 13, 688. doi: 10.1038/nrendo.2017.137 Google ScholarPubMed
Alang, N and Kelly, CR (2015) Weight gain after fecal microbiota transplantation. Open Forum Infect Dis 2. doi: 10.1093/ofid/ofv004 CrossRefGoogle Scholar
Meijnikman, AS, Gerdes, VE, Nieuwdorp, M & Herrema, H (2017). Evaluating causality of gut microbiota in obesity and diabetes in humans. Endocr Rev 39, 133153. doi: 10.1210/er.2017-00192 CrossRefGoogle Scholar
Ryan, KK, Tremaroli, V, Clemmensen, C, et al. (2014) FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509, 183188. doi: 10.1038/nature13135 CrossRefGoogle ScholarPubMed
Jackness, C, Karmally, W, Febres, G, et al. (2013) Very low–calorie diet mimics the early beneficial effect of roux-en-y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes 62, 3027. doi: 10.2337/db12-1762 CrossRefGoogle ScholarPubMed
Vella, A (2013). Does caloric restriction alone explain the effects of Roux-en-Y gastric bypass on glucose metabolism? Not by a long limb. Diabetes 62, 3017. doi: 10.2337/db13-0806 Google ScholarPubMed
de Groot, P, Scheithauer, T, Bakker, GJ, et al. (2020) Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 69, 502. doi: 10.1136/gutjnl-2019-318320 CrossRefGoogle ScholarPubMed
Cani, PD (2019) Severe obesity and gut microbiota: does bariatric surgery really reset the system? Gut 68, 5. doi: 10.1136/gutjnl-2018-316815 CrossRefGoogle ScholarPubMed
Aron-Wisnewsky, J, Prifti, E, Belda, E, et al. (2019) Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut 68, 7082. doi: 10.1136/gutjnl-2018-316103 CrossRefGoogle ScholarPubMed
Bellahcene, M, O’Dowd, JF, Wargent, ET, et al. (2013) Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br J Nutr 109, 17551764. doi: 10.1017/S0007114512003923 CrossRefGoogle ScholarPubMed
Dominguez-Bello, MG, Costello, EK, Contreras, M, et al. (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Nat Acad Sci 107, 11971. doi: 10.1073/pnas.1002601107 Google ScholarPubMed
Luoto, R, Kalliomäki, M, Laitinen, K & Isolauri, E (2010) The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes 34, 15311537. doi: 10.1038/ijo.2010.50 CrossRefGoogle ScholarPubMed
Mueller, NT, Whyatt, R, Hoepner, L, et al. (2015) Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes 39, 665670. doi: 10.1038/ijo.2014.180 CrossRefGoogle ScholarPubMed
Zhang, L, Bahl, MI, Roager, HM, et al. (2017) Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans. ISME J 11, 676690. doi: 10.1038/ismej.2016.151 CrossRefGoogle ScholarPubMed
Maruvada, P, Leone, V, Kaplan, LM & Chang, EB (2017). The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22, 589599. doi: 10.1016/j.chom.2017.10.005 CrossRefGoogle ScholarPubMed
Rausch, P, Rühlemann, M, Hermes, BM, et al. (2019) Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome 7, 133. doi: 10.1186/s40168-019-0743-1 Google ScholarPubMed
Forster, SC, Kumar, N, Anonye, BO, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol 37, 186192. doi: 10.1038/s41587-018-0009-7 CrossRefGoogle Scholar
Swinburn, BA, Sacks, G, Hall, KD, et al. (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804814. doi: 10.1016/S0140-6736(11)60813-1 CrossRefGoogle ScholarPubMed
Organization W-WH (2008) Framework to monitor and evaluate implementation of the Global Strategy on Diet, Physical Activity and Health. 2008. https://www.who.int/dietphysicalactivity/M&E-ENG-09.pdf?ua=1 Google Scholar
Turnbaugh, PJ (2020) Diet should be a tool for researchers, not a treatment. Nature 577, S23. doi: 10.1038/d41586-020-00202-5 CrossRefGoogle Scholar