Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-xr9nb Total loading time: 0.525 Render date: 2021-09-21T18:46:04.973Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Exogenous enzymes for pigs and poultry

Published online by Cambridge University Press:  14 December 2007

M. R. Bedford
Affiliation:
Finnfeeds International Ltd, Marlborough, Wiltshire, UK
H. Schulze
Affiliation:
Finnfeeds International Ltd, Marlborough, Wiltshire, UK
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many feed ingredients in use in monogastric diets contain significant quantities of antinutritional factors (ANF) which limit both their feed value and their use. Almost all enzymes currently being used address such factors to varying degrees, allowing for more economic utilization of raw materials. However, animal response to xylanase, β-glucanase and even phytase utilization reported in the literature tends to vary. Factors such as enzyme source, ingredient variety and environment under which the ingredient was grown, stored and processed into animal feed, age of animal, interaction with other dietary ingredients, and health status are shown to affect significantly the response obtained. As a result, the mode of action of xylanases and β-glucanases is still debated due to too much emphasis being placed on interpretation of individual trial results without regard to the interactive factors or the literature dataset as a whole. Better understanding of such factors will improve data interpretation. While results with phytase are not subject to such extreme variation, they are nevertheless inconsistent in the degree to which inorganic phosphorus can be replaced by this enzyme. Greater understanding of the ANF and factors which interact to govern the response to added exogenous enzymes will undoubtedly improve the economic return and confidence in their use. Improved knowledge of ANF structure will result in development of enzymes directed towards far more specific targets, which enhances the likelihood of success and should reduce the overall enzyme usage.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1998

References

Ahluwalia, B. & Ellis, E. E. (1985). Studies of β-glucan in barley, malt and endosperm cell walls. In New Approaches to Research on Cereal Carbohydrates (Progress in Biotechnology 1), pp. 285290 [Hill, R.D., editor]. Amsterdam: Elsevier.Google Scholar
Allen, C. M., Bedford, M. R. & McCracken, K. J. (1996). Interactions between rate of wheat inclusion, variety, antibiotic and enzyme addition in the responses of broilers to heat-treated, pelleted diets. British Poultry Science 37 (Suppl.), S45S46.Google Scholar
Almirall, M. & Esteve-Garcia, E. (1994). Rate of passage of barley diets with chromium oxide: influence of age and poultry strain and effect of β-glucanase supplementation. Poultry Science 73, 14331440.CrossRefGoogle ScholarPubMed
Almirall, M., Francesch, M., Perez-Vendrell, A. M., Brufau, J. & Esteve-Garcia, E. (1995). The differences in intestinal viscosity produced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. Journal of Nutrition 125, 947955.Google ScholarPubMed
Angkanaporn, K., Choct, M., Bryden, W. L., Annison, E. F. & Annison, G. (1994). Effects of wheat pentosans on endogenous amino acid losses in chickens. Journal of the Science of Food and Agriculture 66, 399404.CrossRefGoogle Scholar
Annison, E. F., Hill, K. J. & Kenworthy, R. (1968). Volatile fatty acids in the digestive tract of the fowl. British Journal of Nutrition 22, 207216.CrossRefGoogle ScholarPubMed
Annison, G. (1990). Polysaccharide composition of Australian wheats and the digestibility of their starches in broiler chicken diets. Australian Journal of Experimental Agriculture 30, 183186.CrossRefGoogle Scholar
Annison, G. (1992). Commercial enzyme supplementation of wheat-based diets raises ileal glycanase activities and improves apparent metabolisable energy, starch and pentosan digestibilities in broiler chickens. Animal Feed Science and Technology 38, 105121.CrossRefGoogle Scholar
Annison, G. (1993). The role of wheat non-starch polysaccharides in broiler nutrition. Australian Journal of Agricultural Research 44, 405422.Google Scholar
Annison, G. & Choct, M. (1991). Anti-nutritive activities of cereal non-starch polysaccharides in broiler diets and strategies minimizing their effects. World's Poultry Science Journal 47, 232242.CrossRefGoogle Scholar
Annison, G., Choct, M. & Cheetham, N. W. (1992). Analysis of wheat arabinoxylans from a large-scale isolation. Carbohydrate Polymers 19, 151159.CrossRefGoogle Scholar
Argenzio, R. A. (1982). Volatile fatty acid production and absorption from the large intestine of the pig. Colloques de l'INRA 12, 207216.Google Scholar
Autio, K. (1997). Functional aspects of cereal cell wall polysaccharides. In Carbohydrates in Food, pp. 227264 [Eliasson, A. C., editor]. Lund, Sweden: University of Lund.Google Scholar
Barrier-Guillot, B., Casado, P., Maupetit, P., Jondreville, C., Gatel, F. & Larbier, M. (1996 a). Wheat phosphorus availability. 1. In vitro study: factors affecting endogenous phytasic activity and phytic phosphorus content. Journal of the Science of Food and Agriculture 70, 6268.3.0.CO;2-M>CrossRefGoogle Scholar
Barrier-Guillot, B., Casado, P., Maupetit, P., Jondreville, C., Gatel, F. & Larbier, M. (1996 b). Wheat phosphorus availability. 2. In vivo study in broilers and pigs; relationship with endogenous phytasic activity and phytic phosphorus content in wheat. Journal of the Science of Food and Agriculture 70, 6974.3.0.CO;2-C>CrossRefGoogle Scholar
Bastawde, K. B. (1992). Xylan structure, microbial xylanases, and their mode of action. World Journal of Microbiology and Biotechnology 8, 353368.CrossRefGoogle ScholarPubMed
Bedford, M. R. (1995). The optimum dose of a xylanase-based enzyme offered to broilers fed a wheat based diet increases as the bird ages. Poultry Science 74, 18 (Abstr.).Google Scholar
Bedford, M. R. (1996 a). Interaction between ingested feed and the digestive system in poultry. Journal of Applied Poultry Research 5, 8695.CrossRefGoogle Scholar
Bedford, M. R. (1996 b). The effect of enzymes on digestion. Journal of Applied Poultry Research 5, 370378.CrossRefGoogle Scholar
Bedford, M. R. (1996c). Enzyme action—under the microscope. Feed Mix 4(5), 2223.Google Scholar
Bedford, M. R. & Autio, K. (1996). Microscopic examination of feed and digesta from wheat-fed broiler chickens and its relation to bird performance. Poultry Science 75 (Suppl. 1). 14.Google Scholar
Bedford, M. R. & Classen, H. L. (1992 a). The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chicks. In Xylans and Xylanases, pp. 361370 [Visser, J., editor].Google Scholar
Bedford, M. R. & Classen, H. L. (1992 b). Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. Journal of Nutrition 122, 560569.CrossRefGoogle Scholar
Bedford, M. R., Classen, H. L. & Campbell, G. L. (1991). The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poultry Science 70, 15711577.CrossRefGoogle ScholarPubMed
Bedford, M. R. & Inborr, J. (1993). Effect of increasing the dietary concentrations of two xylanases on the performance and intestinal viscosity of broiler chickens fed diets based on wheat and triticale. WPSA Proceedings of 9th European Symposium on Poultry Nutrition, Jelenia-Gora, Poland, pp. 485489.Google Scholar
Bedford, M. R. & Morgan, A. J. (1995). The use of enzymes in canola-based diets. In 2nd European Symposium on Feed Enzymes, Noordwijkerhout, pp. 125131 [van Hartingsveldt, W., Hessing, M, van der Lugt, J.P and Somers, W. A.C, editors]. Zeist: TNO Nutrition and Food Research Institute.Google Scholar
Bedford, M. R. & Morgan, A. J. (1996). The use of enzymes in poultry diets. World's Poultry Science Journal 52, 6168.CrossRefGoogle Scholar
Bedford, M. R., Pack, M. & Wyatt, C. L. (1997). Relevance of in feed analysis of enzyme activity for prediction of bird performance in wheat based diets. Poultry Science 76 (Suppl. 1), 39.Google Scholar
Bedford, M. R., Patience, J. F., Classen, H. L. & Inborr, J. (1992). The effect of dietary enzyme supplementation of rye-and barley-based diets on digestion and subsequent performance in weanling pigs. Canadian Journal of Animal Science 72, 97105.Google Scholar
Beudecker, R. F. & Pen, J. (1995). Development of plant seeds expressing phytase as a feed. In 2nd European Symposium on Feed Enzymes, Noordwijkerhout, pp. 225231 [van Hartingsveldt, W., Hessing, M., van der Lugt, J. P. and Somers, W. A.C., editors]. Zeist: TNO Nutrition and Food Research Institute.Google Scholar
Bhandari, S. D. (1980). Effect of phytate feeding with and without protein and vitamin D deficiencies on intestinal phytase activity in rat. Indian Journal of Biochemistry and Biophysics 17, 309312.Google ScholarPubMed
Bhat, M. K. & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances 15, 583620.CrossRefGoogle ScholarPubMed
Bulfield, G., Isaacson, J. H. & Middleton, R. J. (1988). Biochemical correlates of selection for weight-for-age in chickens: twenty fold higher muscle ornithine decarboxylase levels in modern broilers. Theoretical and Applied Genetics 75, 432437.CrossRefGoogle Scholar
Caldwell, R. A. (1992). Effect of calcium and phytic acid on the activation of trypsinogen and the stability of trypsin. Journal of Agricultural and Food Chemistry 40, 4346.CrossRefGoogle Scholar
Campbell, G. L. & Bedford, M. R. (1992). Enzyme applications for monogastric feeds: a review. Canadian Journal of Animal Science 72, 449466.CrossRefGoogle Scholar
Campbell, G. L., Classen, H. L. & Goldsmith, K. A. (1983). Effect of fat retention on the rachitogenic effect of rye fed to broiler chicks. Poultry Science 62, 22182223.CrossRefGoogle ScholarPubMed
Carre, B., Lessire, M., Nguyen, T. H. & Larbier, M. (1992). Effects of enzymes on feed efficiency and digestibility of nutrients in broilers. In Proceedings, 19th World Poultry Congress, Amsterdam, pp. 411415.Google Scholar
Cera, K. R., Mahan, D. C., Cross, R. F., Reinhart, G. A. & Whitmoyer, R. E. (1988). Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. Journal of Animal Science 66, 574584.CrossRefGoogle ScholarPubMed
Chesson, A. & Travis, A. J. (1997). Engineering improved forage degradation characteristics. In Recent Advances in Animal Nutrition, pp. 2132. University of New England, Australia.Google Scholar
Choct, M. & Annison, G. (1992). The inhibition of nutrient digestion by wheat pentosans. British Journal of Nutrition 67, 123132.CrossRefGoogle ScholarPubMed
Choct, M., Hughes, R. J., Wang, J., Bedford, M. R., Morgan, A. J. & Annison, G. (1996). Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. British Poultry Science 37, 609621.CrossRefGoogle ScholarPubMed
Classen, H. L., Campbell, G. L., Rossnagel, B. G., Bhatty, R. S. & Reichert, R. D. (1985). Studies on the use of hulless barley in chick diets: deleterious effects and methods of alleviation. Canadian Journal of Animal Science 65, 725733.CrossRefGoogle Scholar
Coelho, M. B. (1994). Vitamin stability in expanders. Feed Management 45(8), 1015.Google Scholar
Cook, M. E. (1996) Immune regulation of nutrient metabolism. Proceedings, Summit II, Breed x Nutrition, Athens, GA, pp. 610.Google Scholar
Cowan, W. D., Jorgensen, O. B., Rasmussen, P. B. & Wagner, P. (1993). Role of single activity xylanase enzyme components in improving feed performance in wheat based poultry diets. Agro Food Industry Hi-Tech 4(4) 1114.Google Scholar
Cowan, W. D., Korsbak, A., Hastrup, T. & Rasmussen, P. B. (1996). Influence of added microbial enzymes on energy and protein availability of selected feed ingredients. Animal Feed Science and Technology 60, 311319.CrossRefGoogle Scholar
Dais, P. & Perlin, A. S. (1982). High-field, 13C-N.M.R. spectroscopy of β-D-glucans, amylopectin, and glycogen. Carbohydrate Research 100, 103116.CrossRefGoogle Scholar
Dämmrich, K. (1987). Organ change and damage during stress—morphological diagnosis. In Biology of Stress in Farm Animals: an integrated approach (CEC Seminar, 1986), pp. 7181 [Wiepkema, P. R. & van Adrichem, P. W. M., editors]. Dordrecht: Martinus Nijhoff.CrossRefGoogle Scholar
Danicke, S., Simon, O., Jeroch, H. & Bedford, M. R. (1995). Effect of fat source and xylanase supplementation on the performance and intestinal viscosity in rye fed birds. In 2nd European Symposium on Feed Enzymes, Noordwijkerhout, pp. 102106 [van Hartingsveldt, W., Hessing, M., van der Lugt, J. P and Somers, W. A. C., editors]. Zeist: TNO Nutrition and Food Research Institute.Google Scholar
Delcour, J. A., Vanhamel, S. & Hoseney, R. C. (1991). Physicochemical and functional properties of rye nonstarch polysaccharides. II. Impact of a fraction containing water-soluble pentosans and proteins on gluten-starch loaf volumes. Cereal Chemistry 68, 7276.Google Scholar
Dintzis, F. R., Lehrfeld, J., Nelsen, T. C. & Finney, P. L. (1992). Phytate content of soft wheat bran as related to kernel size, cultivar, location, and milling and flour quality parameters. Cereal Chemistry 69, 577581.Google Scholar
Dudkin, M. S., Sorochan, D. V. & Kozlov, G. F. (1976). [The structure of the water-soluble arabinoxylan of wheat endosperm.] Khimiya Prirodnykh Soedinenii (1), 1315.Google Scholar
Dungelhoef, M., Rodehutscord, M., Spiekers, H. & Pfeffer, E. (1994). Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Animal Feed Science and Technology 49, 110.CrossRefGoogle Scholar
Dusel, G., Kluge, H., Simon, O., Jeroch, H. & Schulze, H. (1997). [Effect on intestinal viscosity and nutrient digestibility in piglets of NSP-hydrolysing enzymes in high cereal diets.] Proceedings, Society for Nutritional Physiology 6, 131145.Google Scholar
Düsterhöft, E.-M., Linssen, V. A. J. M., Voragen, A. G. J. & Beldman, G. (1997). Purification, characterization, and properties of two xylanases from Humicola insolens. Enzyme and Microbial Technology 20, 437445.CrossRefGoogle Scholar
Edney, M. J., Campbell, G. L. & Classen, H. L. (1989). The effect of β-glucanase supplementation on nutrient digestibility and growth in broilers given diets containing barley, oat groats or wheat. Animal Feed Science and Technology 25, 193200.CrossRefGoogle Scholar
Edney, M. J., Marchylo, B. A. & MacGregor, A. W. (1991). Structure of total barley β-glucan. Journal of the Institute of Brewing 97, 3944.CrossRefGoogle Scholar
Edwards, C. A., Johnson, I. T. & Read, N. W. (1988). Do viscous polysaccharides slow absorption by inhibiting diffusion or convection? European Journal of Clinical Nutrition 42, 307312.Google ScholarPubMed
Edwards, H. M. (1993). Dietary 1,25-dihydroxycholecalciferol supplementation increases natural phytate phosphorus utilization in chickens. Journal of Nutrition 123, 567577.CrossRefGoogle ScholarPubMed
Ellis, P. R., Rayment, P. & Wang, Q. (1996). A physico-chemical perspective of plant polysaccharides in relation to glucose absorption, insulin secretion and the entero-insular axis. Proceedings of the Nutrition Society 55, 881898.CrossRefGoogle ScholarPubMed
Entringer, R. P., Plumlee, M. P., Conrad, J. H., Cline, T. R. & Wolfe, S. (1975). Influence of diet on passage rate and apparent digestibility by growing swine. Journal of Animal Science 40, 486494.CrossRefGoogle ScholarPubMed
Fengler, A. I. & Marquardt, R. R. (1988 a). Water soluble pentosans from rye. I. Isolation, partial purification, and characterization. Cereal Chemistry 65, 291297.Google Scholar
Fengler, A. I. & Marquardt, R. R. (1988 b). Water-soluble pentosans from rye. II. Effects on rate of dialysis and on the retention of nutrients by the chick. Cereal Chemistry 65, 298302.Google Scholar
Fisher, H. (1992). Low-calcium diets enhance phytate-phosphorus availability. Nutrition Reviews 50, 170171.CrossRefGoogle ScholarPubMed
Friesen, K. G., Nelssen, J. L., Unruh, J. A., Goodband, R. D. & Tokach, M. D. (1994). Effects of the interrelationship between genotype, sex, and dietary lysine on growth performance and carcass composition in finishing pigs fed to either 104 or 127 kilograms. Journal of Animal Science 72, 946954.CrossRefGoogle ScholarPubMed
Frolich, W. (1990). Chelating properties of dietary fiber and phytate, the role for mineral availability. In New Developments in Dietary Fiber, pp. 8393 [Furda, I. and Brine, C. J., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Fuller, M. F., Franklin, M. F., McWilliam, R. & Pennie, K. (1995). The responses of growing pigs, of different sex and genotype, to dietary energy and protein. Animal Science 60, 291298.CrossRefGoogle Scholar
Gee, J. M., Lee-Finglas, W. & Johnson, I. T. (1996). Fermentable carbohydrate modulates postprandial enteroglucagon and gastrin release in rats. British Journal of Nutrition 75, 757766.CrossRefGoogle ScholarPubMed
Girhammar, U. & Nair, B. M. (1992 a). Certain physical properties of water soluble non-starch polysaccharides from wheat, rye, triticale, barley and oats. Food Hydrocolloids 6, 329343.CrossRefGoogle Scholar
Girhammar, U. & Nair, B. M. (1992 a). Isolation, separation and characterization of water soluble non-starch polysaccharides from wheat and rye. Food Hydrocolloids 6, 285299.CrossRefGoogle Scholar
Grootwassink, J. W. D., Campbell, G. L. & Classen, H. L. (1989). Fractionation of crude pentosanase (arabinoxylanase) for improvement of the nutritional value of rye diets for broiler chickens. Journal of the Science of Food and Agriculture 46, 289300.Google Scholar
Guenter, W., Slominski, B. A., Simbaya, J., Campbell, L. D. & Morgan, A. J. (1995). Potential for improved utilization of canola meal using exogenous enzymes. Proceedings, 9th International Rapeseed Congress, Cambridge, pp. 164166.Google Scholar
Hancock, C. E., Bradford, G. D., Emmans, G. C. & Gous, R. M. (1995). The evaluation of the growth parameters of six strains of commercial broiler chickens. British Poultry Science 36, 247264.CrossRefGoogle ScholarPubMed
Heredia, A., Jimenez, A. & Guillen, R. (1995). Composition of plant cell walls. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 200, 2431.CrossRefGoogle ScholarPubMed
Hessing, M., Mocking-Bode, H., Bleeker-Marcelis, H., Van Laarhoven, H., Rooke, J. A. & Morgan, A. J. (1995). Quality of soybean meals and effect of microbial enzymes in degrading soya antinutritional compounds (ANCs) using immunochemical, microscopic techniques and in vivo studies. In 2nd European Symposium on Feed Enzymes Noordwijkerhout, pp. 176177 [van Hartingsveldt, W., Hessing, M., van der Lugt, J.P and Somers, W. A. C., editors]. Zeist: Nutrition and Food Research Institute.Google Scholar
Hock, E., Halle, I., Matthes, S. & Jeroch, H. (1997). Investigations on the composition of the ileal and caecal microflora of broiler chicks in consideration to dietary enzyme preparation and zinc bacitracin in wheat-based diets. Agribiological Research—Zeitschrift für Agrarbiologie, Agrikulturchemie, Ökologie 50, 8595.Google Scholar
Holben, W. E. & Harris, D. (1995). DNA based monitoring of total bacterial community structure in environmental samples. Molecular Ecology 4, 627631.CrossRefGoogle ScholarPubMed
Huisman, J. (1992). Aspects of anti-nutritional factors (ANFs) in relation to nutrition and pollution. Proceedings, 19th World Poultry CongressAmsterdam, pp. 215222.Google Scholar
Huisman, J. & van der Poel, A. F. B. (1987). Effects of antinutritional factors (ANF) in pig nutrition. Proceedings, 38th Annual Meeting of EAAPPortugal, pp. 117128.Google Scholar
Huo, G. C., Fowler, V. R., Inborr, J. & Bedford, M. R. (1993). The use of enzymes to denature antinutritive factors in soyabean. Proceedings, 2nd International Workshop on ANFs in Legume SeedWageningen, pp. 517521 [van der Poel, A.F.B., Huisman, J. and Saini, H. S., editors]. Wageningen Pers.Google Scholar
Inborr, J., Bedford, M. R. & Graham, H. (1994). Effect of enzyme supplementation on intestinal parameters in the pig. Proceedings, BSAP Winter MeetingScarborough.Google Scholar
Ito, K., Ogasawara, H., Sugimoto, T. & Ishikawa, T. (1992). Purification and properties of acid stable xylanases from Aspergillus kawachii. Bioscience, Biotechology, and Biochemistry 56, 547550.CrossRefGoogle Scholar
Ito, S. (1997). Alkaline cellulases from alkaliphilic Bacillus—enzymatic properties, genetics, and application to detergents. Extremophiles 1(2), 6166.CrossRefGoogle ScholarPubMed
Izydorczyk, M. S. & Biliaderis, C. G. (1992 a). Influence of structure on the physicochemical properties of wheat arabinoxylan. Carbohydrate Polymers 17, 237247.CrossRefGoogle Scholar
Izydorczyk, M. S. & Biliaderis, C. G. (1992 b). Effect of molecular size on physical properties of wheat arabinoxylan. Journal of Agricultural and Food Chemistry 40, 561568.CrossRefGoogle Scholar
Jackson, S. & Diamond, J. (1996). Metabolic and digestive responses to artificial selection in chickens. Evolution 50, 16381650.CrossRefGoogle ScholarPubMed
Jansman, A. J. M., Schulze, H., Bosch, M. W. & Leuvenink, H. (1996). Effect of xylanase supplementation to a wheat based diet on the portal fluxes of glucose and volatile fatty acids in pigs. Animal Science 74 (Suppl. 1), 19.Google Scholar
Jansman, A. J. M., Schulze, H., van Leeuwen, P. & Verstegen, M. W. A. (1994). Effects of protease inhibitors and lectins from soya on the true digestibility and endogenous excretion of crude protein in piglets Proceedings, VIth International Symposium on Digestive Physiology in Pigs(EAAP Publication 80). pp. 322324 [Souffrant, W.-B. and Hagemiester, H., editors].Google Scholar
Johansen, H. N., Wood, P. J. & Bach Knudsen, K. E. (1993). Molecular weight changes in the (1-<3)(1-<4) β-D-glucan of oats incurred by the digestive processes in the upper gastrointestinal tract of pigs. Journal of Agricultural and Food Chemistry 41, 23472352.CrossRefGoogle Scholar
Johnson, I. T., Gee, J. M. & Mahoney, R. R. (1984). Effect of dietary supplements of guar gum and cellulose on intestinal cell proliferation, enzyme levels and sugar transport in the rat. British Journal of Nutrition 52, 477487.CrossRefGoogle ScholarPubMed
Jondreville, C., Brongniart, I., Gatel, F. & Grosjean, F. (1995). [Effect of enzyme supplementation on the ileal digestibility of barley-based diets in growing pigs.] Journées de la Recherche Porcine en France 27, 217222.Google Scholar
Jongbloed, A. W. & Kemme, P. A. (1990). Effect of pelleting mixed feeds on phytase activity and the apparent absorbability of phosphorus and calcium in pigs. Animal Feed Science and Technology 28, 233242.CrossRefGoogle Scholar
Kanauchi, O., Deuchi, K., Imasato, Y., Shizukuishi, M. & Kobayashi, E. (1995). Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Bioscience, Biotechnology, and Biochemistry 59, 786790.CrossRefGoogle ScholarPubMed
Kemme, P. A., Jongbloed, A. W., Mroz, Z. & Beynen, A. C. (1997). The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. Journal of Animal Science 75, 21292138.CrossRefGoogle ScholarPubMed
Kirchgessner, M. & Müller, H. L. (1991). Energy utilization via hindgut fermentation in pigs. In Digestive Physiology of the Hindgut (Advances in Animal Physiology and Animal Nutrition 22). pp. 4149 [Kirchgessner, M. editor].Google Scholar
Kluepfel, D., Daigneault, N., Morosoli, R. & Shareck, F. (1992). Purification and characterisation of a new xylanase (xylanase C) produced by Streptomyces lividans 66. Applied Microbiology and Biotechnology 36, 626631.CrossRefGoogle Scholar
Kormelink, F. J. M., Searle-Van Leeuwen, M. J. F., Wood, T.M. & Voragen, A.G. J. (1993). Purification and characterisation of three endo-(1,4)-β-xylanases and one β-xylosidase from Aspergillus awamori. Journal of Biotechnology 27, 249265.CrossRefGoogle Scholar
Kornegay, E. T., Denbow, D. M., Yi, Z. & Ravindran, V. (1996). Response of broilers to graded levels of microbial phytase added to maize-soyabean-meal-based diets containing three levels of non-phytate phosphorus. British Journal of Nutrition 75, 839852.CrossRefGoogle ScholarPubMed
Kornegay, E. T., Denbow, D. M. & Zhang, Z. (1997). Phytase supplementation of corn-soybean meal broiler diets from three to seven weeks of age. Poultry Science 76 (Suppl. 1). 6.Google Scholar
Krogdahl, Å. & Sell, J. L. (1989). Influence of age on lipase, amylase, and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poultry Science 68, 15611568.CrossRefGoogle ScholarPubMed
Lantzsch, H.-J., Hillenbrand, S., Scheuermann, S. E. & Menke, K. H. (1992) Comparative study of phosphorus utilization from wheat, barley and corn diets by young rats and pigs. Journal of Animal Physiology and Animal Nutrition 67, 123132.CrossRefGoogle Scholar
Larsen, F. M., Moughan, P. J. & Wilson, M. N. (1993). Dietary fiber viscosity and endogenous protein excretion at the terminal ileum of growing rats. Journal of Nutrition 123, 18981904.CrossRefGoogle ScholarPubMed
Leeson, S., Yersin, A. & Volker, L. (1993). Nutritive value of the 1992 corn crop. Journal of Applied Poultry Research 2, 208213.CrossRefGoogle Scholar
Le Huerou-Luron, I., Lhoste, E., Wicker-Planquart, C., Dakka, N., Toullee, R., Corring, T., Guilloteau, P. & Puigserver, A. (1993). Molecular aspects of enzyme synthesis in the exocrine pancreas with emphasis on development and nutritional regulation. Proceedings of the Nutrition Society 52, 301313.CrossRefGoogle ScholarPubMed
Lhoste, E. F., Fiszlewicz, M., Gueugneau, A. M., Wicker-Planquart, C., Puigserver, A. & Corring, T. (1993). Effects of dietary proteins on some pancreatic mRNAs encoding digestive enzymes in the pig. Journal of Nutritional Biochemistry 4, 143152.CrossRefGoogle Scholar
Liebert, F., Kohler, R. & Wecke, C. (1996). Studies concerning the proteolytic condition in the intestinal tract of chickens, as related to nitrogen and phosphorus utilization dependent on trypsin inhibitor activity and phytase addition in the diet. Journal of Animal Physiology and Animal Nutrition 75, 192199.CrossRefGoogle Scholar
Liener, I. E. (1994). Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition 34, 3167.CrossRefGoogle ScholarPubMed
Lindemann, M. D., Cornelius, S. G., EI Kandelgy, S. M., Moser, R. L. & Pettigrew, J. E. (1986). Effect of age, weaning and diet on digestive enzyme levels in the piglet. Journal of Animal Science 62, 12981307.CrossRefGoogle ScholarPubMed
McConlogue, L., Gupta, M., Wu, L. & Coffino, P. (1984). Molecular cloning and expression of the mouse ornithine decarboxylase gene. Proceedings of the National Academy of Sciences of the USA 81, 540544.CrossRefGoogle ScholarPubMed
McKnight, W. F. (1997). A review of the use of Natuphos in broiler, layer and turkey diets. Proceedings, Minnesota Nutrition Conference, pp. 6176.Google Scholar
McNab, J. M., Bernard, K., Knox, A. I., McNeill, L. & Bedford, M. R. (1996). The effect of enzyme addition on digestibility of nitrogen and energy metabolism in young turkeys, broiler chickens and adult cockerels. Poultry Science 75 (Suppl. 1), 33.Google Scholar
Maenz, D. D., Engele-Schaan, C. M. & Classen, H. L. (1997). Endogenous phytase activity in the small intestinal brush border membrane of broiler chicks and laying hens. Poultry Science 76, 71.Google Scholar
Mahagna, M. & Nir, I. (1996). Comparative development of digestive organs, intestinal disaccharides and some blood metabolites in broiler and layer-type chicks after hatching. British Poultry Science 37, 359371.CrossRefGoogle Scholar
Makkink, C. A. & Verstegen, M. W. A. (1990). Pancreatic secretion in pigs. Journal of Animal Physiology and Animal Nutrition 64, 190208.CrossRefGoogle Scholar
Manners, M. J. (1976). The development of digestive function in the pig. Proceedings of the Nutrition Society 35, 4955.CrossRefGoogle ScholarPubMed
Marquardt, R. R., Brenes, A., Zhang, Z. & Boros, D. (1996) Use of enzymes to improve nutrient availability in poultry feedstuffs. Animal Feed Science and Technology 60, 321330.CrossRefGoogle Scholar
Mateos, G. G., Sell, J. L. & Eastwood, J. A. (1982). Rate of food passage (transit time) as influenced by level of supplemental fat. Poultry Science 61, 94100.CrossRefGoogle ScholarPubMed
Matthaus, B. (1997). Antinutritive compounds in different oilseeds. Fett/Lipid 99, 170174.CrossRefGoogle Scholar
Matyka, S., Korol, W. & Bogusz, G. (1990). The retention of phytin phosphorus from diets with fat supplements in broiler chicks. Animal Feed Science and Technology 31, 223230.CrossRefGoogle Scholar
Miles, R. D., Brown, R. D. J., Comer, C. W. & Oelfke, E. (1996). Influence of an enzyme and an antibiotic on broiler performance. Journal of Applied Animal Research 9, 105117.CrossRefGoogle Scholar
Mitchell, M. A. & Smith, M. W. (1991). The effects of genetic selection for increased growth rate on mucosal and muscle weights in the different regions of the small intestine of the domestic fowl (Gallus domesticus). Comparative Biochemistry and Physiology A 99, 251258.CrossRefGoogle Scholar
Morgan, A. J., Bedford, M. R., Tervila-Wilo, A., Autio, K., Hopeakoski-Nurminen, M., Poutanen, K. & Parkkonen, T. (1995). How enzymes improve the nutritional value of wheat. Zootecnica International (04) 4448.Google Scholar
Mourot, J. & Corring, T. (1979). Adaptation of the lipase-colipase system to dietary lipid content in pig pancreatic tissue. Annales de Biologie Animale, Biochimie, Biophysique 19(1A), 119124.CrossRefGoogle Scholar
Muramatsu, T., Hiramoto, K. & Okumura, J. (1990). Strain differences in whole-body protein turnover in the chicken embryo. British Poultry Science 31, 9199.CrossRefGoogle ScholarPubMed
Näsi, M. (1990). Microbial phytase supplementation for improving availability of plant phosphorus in the diet of growing pigs. Journal of Agricultural Science in Finland 62, 435443.Google Scholar
National Research Council (1994). Nutrient Requirements of Poultry, 9th rev. edn. Washington, DC: National Academy Press.Google Scholar
Nir, I., Nitsan, Z. & Mahagna, M. (1993). Comparative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. British Poultry Science 34, 523532.CrossRefGoogle ScholarPubMed
Nissinen, V. (1994). Enzymes and processing: the effects and interaction of enzymes and hydrothermal pre-treatments and their contribution to feeding value. International Milling, Flour & Feed (05), 1718.Google Scholar
Nitsan, Z., Ben-Avraham, G., Zoref, Z. & Nir, I. (1991). Growth and development of the digestive organs and some enzymes in broiler chicks after hatching. British Poultry Science 32, 515523.CrossRefGoogle ScholarPubMed
Noy, Y. & Sklan, D. (1994). Digestion and absorption in the young chick. Poultry Science 73 366373.Google Scholar
Ogawa, K. (1988). Purification and some properties of two endo-type cellulases from Trichoderma viride. Bulletin of the Faculty of Agriculture, Miyazaki University 35(1), 120.Google Scholar
Owsley, W. F., Orr, D. E. & Tribble, L. F. (1986). Effect of age and diet on the development of the pancreas and the synthesis and secretion of pancreatic enzymes in the young pig. Journal of Animal Science 63, 497–504.CrossRefGoogle Scholar
Parkkonen, T., Tervila-Wilo, A., Hopeakoski-Nurminen, M., Morgan, A. J., Poutanen, K. & Autio, K. (1997). Changes in wheat microstructure following in vitro digestion. Acta Agriculturae Scandinavica 47B, 4347.Google Scholar
Pasquier, B., Armand, M., Guillon, F., Castelain, C., Borel, P., Barry, J.-L., Pieroni, G. & Lairon, D. (1996). Viscous soluble dietary fibres alter emulsification and lipolysis of triacylglycerols in duodenal medium in vitro. Journal of Nutritional Biochemistry 7, 293302.CrossRefGoogle Scholar
Peisker, M. (1992). High-temperature-short-time conditioning: physical and chemical changes during expansion. Feed International 13(2), 1634.Google Scholar
Pen, J., Verwoerd, T. C., van Paridon, P. A., Beudeker, R. F., van den Elzen, P. J. M., Geerse, K., van der Klis, J. D., Versteegh, H. A. J., van Ooyen, A. J. J. & Hoekema, A. (1993). Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Biotechnology 11, 811814.Google Scholar
Pettersson, D. & Åman, P. (1988). Effects of enzyme supplementation of diets based on wheat, rye or triticale on their productive value for broiler chickens. Animal Feed Science and Technology 20, 313324.CrossRefGoogle Scholar
Pettersson, D., Graham, H. & Åman, P. (1990). Enzyme supplementation of broiler chicken diets based on cereals with endosperm cell walls rich in arabinoxylans or mixed-linked β-glucans. Animal Production 51, 201207.CrossRefGoogle Scholar
Pettersson, D., Graham, H. & Åman, P. (1991). The nutritive value for broiler chickens of pelleting and enzyme supplementation of a diet containing barley, wheat and rye. Animal Feed Science and Technology 33, 114.CrossRefGoogle Scholar
Pickford, J. R. (1992). Effects of processing on the stability of heat labile nutrients in animal feeds. In Recent Advances in Animal Nutrition—1992, pp. 177192 [Garnsworthy, P. C., Haresign, W., and Cole, D. J.A., editors]. London: Butterworth Heinemann Press.CrossRefGoogle Scholar
Pinchasov, Y., Nir, I. & Nitsan, Z. (1990). Metabolic and anatomical adaptations of heavy bodied chicks to intermittent feeding. 2. Pancreatic digestive enzymes. British Poultry Science 31, 769–777.CrossRefGoogle ScholarPubMed
Pointillart, A. (1991). Enhancement of phosphorus utilization in growing pigs fed phytate-rich diets by using rye bran. Journal of Animal Science 69, 11091115.CrossRefGoogle ScholarPubMed
Pointillart, A., Fontaine, N., Thomasset, M. & Jay, M. E. (1985). Phosphorus utilization, intestinal phosphatases and hormonal control of calcium metabolism in pigs fed phytic phosphorus: soybean or rapeseed diets. Nutrition Reports International 32, 155167.Google Scholar
Poutanen, K. (1988). Characterization of xylanolytic enzymes for potential applications. Technical Research Centre of Finland Publication 47 (PhD Dissertation).Google Scholar
Poutanen, K., Tenkanen, M., Korte, H. & Puls, J. (1991). Accesory enzymes involved in the hydrolysis of xylans. In Enzymes in Biomass Conversion (ACS Symposium Series 460), pp. 426436 [Leatham, G.F. and Himmel, M. E., editors]. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Qian, H., Kornegay, E. T. & Denbow, D. M. (1997). Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium:total phosphorus ratio in broiler diets. Poultry Science 76, 3746.CrossRefGoogle ScholarPubMed
Rada, V. & Marounek, M. (1996). Effect of monensin on the crop microflora of broiler chickens. Annales de Zootechnie 45, 283288.CrossRefGoogle Scholar
Ritz, C. W., Hulet, R. M., Self, B. B. & Denbow, D. M. (1995). Growth and intestinal morphology of male turkeys as influenced by dietary supplementation of amylase and xylanase. Poultry Science 74, 13291334.CrossRefGoogle ScholarPubMed
Saini, H. S. & Henry, R. J. (1989). Fractionation and evaluation of triticale pentosans: comparison with wheat and rye. Cereal Chemistry 66, 1114.Google Scholar
Sakamoto, K., Vucenik, I. & Shamsuddin, A. M. (1993). [3H] phytic acid (inositol hexaphosphate) is absorbed and distributed to various tissues in rats. Journal of Nutrition 123, 713720.CrossRefGoogle ScholarPubMed
Sauveur, B. (1989). [Phytic phosphorus and phytases in the nutrition of poultry.] INRA Productions Animales 2, 343351.Google Scholar
Schoner, F.-J., Hoppe, P. P., Schwarz, G. & Wiesche, H. (1993). [Comparison of microbial phytase and inorganic phosphate in male chickens: the influence on performance data, mineral retention and dietary calcium.] Journal of Animal Physiology and Animal Nutrition 69, 235244.Google Scholar
Scott, T. A. & Boldaji, F. (1997). Comparison of inert markers (chromic oxide or insoluble ash [Celite™]) for determining apparent metabolizable energy of wheat- or barley-based broiler diets with or without enzymes. Poultry Science 76, 594598.CrossRefGoogle ScholarPubMed
Sebastian, S., Touchburn, S. P., Chavez, E. R. & Lague, P. C. (1996). Efficacy of supplemental microbial phytase at different dietary calcium levels on growth performance and mineral utilization of broiler chickens. Poultry Science 75, 15161523.CrossRefGoogle ScholarPubMed
Segueilha, L., Lambrechts, C., Boze, H., Moulin, G. & Galzy, P. (1992). Purification and properties of the phytase from Schwanniomyces castellii. Journal of Fermentation and Bioengineering 74, 711.CrossRefGoogle Scholar
Sell, J. L., Koldovsky, O. & Reid, B. L. (1989). Intestinal disaccharidases of young turkeys: temporal development and influence of diet composition. Poultry Science 68, 265277.CrossRefGoogle ScholarPubMed
Shimizu, M. (1992). Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Bioscience, Biotechnology, and Biochemistry 56, 12661269.CrossRefGoogle Scholar
Shoemaker, S., Watt, K., Tsitovsky, G. & Cox, R. (1983). Characterization and properties of all cellulases purified from Trichoderma reesei strain L27. Biotechnology (10.), 687690.Google Scholar
Simons, P. C. M., Versteegh, H. A. J., Jongbloed, A. W., Kemme, P. A., Slump, P., Bos, K. D., Wolters, M. G. E., Beudeker, R. F. & Verschoor, G. J. (1990). Improvement of phosphorus availability by microbial phytase in broilers and pigs. British Journal of Nutrition 64, 525540.CrossRefGoogle ScholarPubMed
Smits, C. H. M., Veldman, A., Verstegen, M. W. A. & Beynen, A. C. (1997). Dietary carboxymethylcellulose with high instead of low viscosity reduces macronutrient digestion in broiler chickens. Journal of Nutrition 127, 483487.CrossRefGoogle ScholarPubMed
Sooncharernying, S. & Edwards, H. M. (1993). Phytate content of excreta and phytate retention in the gastrointestinal tract of young chickens. Poultry Science 72, 19061916.CrossRefGoogle Scholar
Stern, S., Lundeheim, N. & Andersson, K. (1995). Growth and carcass traits in pigs after selection for lean tissue growth rate on low and high protein diets. Animal Science 61, 341346.CrossRefGoogle Scholar
Sudendey, C. & Kamphues, J. (1995). [Effect of enzyme addition (amylase, xylanase and β-glucanase) on digestive processes in the intestinal tract of force fed weaner piglets] Proceedings, Society for Nutritional Physiology 3, 145171Google Scholar
Sunna, A. & Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology 17, 3967.CrossRefGoogle ScholarPubMed
Tamminga, S., Schulze, H., van Bruchem, J. & Huisman, J. (1995). The nutritional significance of endogenous N-losses along the gastro-intestinal tract of farm animals. Review. Archives of Animal Nutrition 48, 922.Google Scholar
Tenkanen, M., Schuseil, J., Puls, J. & Poutanen, K. (1991). Production, purification and characterization of an esterase liberating phenolic acids from lignocellulosics. Journal of Biotechnology 18, 6983.CrossRefGoogle Scholar
Tervila-Wilo, A., Parkkonen, T., Morgan, A. J., Hopeakoski-Nurminen, M., Poutanen, K., Heikkinen, P. & Autio, K. (1996). In vitro digestion of wheat microstructure with xylanase and cellulase from Trichoderma reesei. Journal of Cereal Science 24, 215225.CrossRefGoogle Scholar
Theander, O., Westerlund, E. & Åman, P. (1993). Structure and components of dietary fiber. Cereal Foods World 38, 135–138, 140141.Google Scholar
Torre, M., Rodriguez, A. R. & Saura-Calixto, F. (1991). Effects of dietary fiber and phytic acid on mineral availability. Critical Reviews in Food Science and Nutrition 30, 123.CrossRefGoogle ScholarPubMed
Uchiyama, Y. & Watanabe, M. (1990). Development and comparative aspects of the pancreas. In Ultrastructure of the Extraparietal Glands of the Digestive Tract, pp. 99113 [Riva, A. and Motta, P. M. editors]. Kluwer Academic Publishers.CrossRefGoogle Scholar
Ullah, A. H. J. & Phillippy, B. Q. (1994). Substrate selectivity in Aspergillus ficuum phytase and acid phosphatases using myo-inositol phosphates. Journal of Agricultural and Food Chemistry 42, 423425.CrossRefGoogle Scholar
Uni, Z., Noy, Y. & Sklan, D. (1995). Development of the small intestine in heavy and light strain chicks before and after hatching. British Poultry Science 36, 6371.Google Scholar
van der Klis, J. D. & van Voorst, A. (1993). The effect of carboxy methyl cellulose (a soluble polysaccharide) on the rate of marker excretion from the gastrointestinal tract of broilers. Poultry Science 72, 503512.CrossRefGoogle Scholar
van der Klis, J. D., van Voorst, A. & van Cruyningen, C. (1993). Effect of a soluble polysaccharide (carboxy methyl cellulose) on the physico-chemical conditions in the gastrointestinal tract of broilers. British Poultry Science 34, 971983.CrossRefGoogle ScholarPubMed
van der Klis, J. D., Versteegh, H. A. J., Simons, P. C. M. & Kies, A. K. (1997). The efficacy of phytase in corn-soybean meal-based diets for laying hens. Poultry Science 76, 15351542.CrossRefGoogle ScholarPubMed
van der Klis, J. D., Verstegen, M. W. A. & de Wit, W. (1990). Absorption of minerals and retention time of dry matter in the gastrointestinal tract of broilers. Poultry Science 69, 21852194.CrossRefGoogle ScholarPubMed
Vinkx, C. J. A. & Delcour, J. A. (1996). Rye (Secale cereale L.) arabinoxylans: a critical review. Journal of Cereal Science 24, 114.CrossRefGoogle Scholar
Viveros, A., Brenes, A., Pizarro, M. & Castano, M. (1994). Effect of enzyme supplementation of a diet based on barley, and autoclave treatment, on apparent digestibility, growth performance and gut morphology of broilers. Animal Feed Science and Technology 48, 237251.CrossRefGoogle Scholar
Vukic Vranjes, M. & Wenk, C. (1996). Influence of Trichoderma viride enzyme complex on nutrient utilization and performance of laying hens in diets with and without antibiotic supplementation. Poultry Science 75, 551555.CrossRefGoogle ScholarPubMed
Wang, L., Newman, R. K., Newman, C. W. & Hofer, P. J. (1992). Barley β-glucans alter intestinal viscosity and reduce plasma cholesterol concentrations in chicks. Journal of Nutrition 122, 22922297.CrossRefGoogle ScholarPubMed
White, W. B., Bird, H. R., Sunde, M. L., Marlett, J. A., Prentice, N. A. & Burger, W. C. (1983). Viscosity of β-D-glucan as a factor in the enzymatic improvement of barley for chicks. Poultry Science 62, 853862.CrossRefGoogle Scholar
White, W. B., Bird, H. R., Sunde, M. L., Prentice, N. A., Burger, W. C. & Marlett, J. A. (1981). The viscosity interaction of barley β-glucan with Trichoderma viride cellulase in the chick intestine. Poultry Science 60, 10431048CrossRefGoogle ScholarPubMed
Widdowson, E. M. (1985). Development of the digestive system: comparative animal studies. American Journal of Clinical Nutrition 41, 384390.CrossRefGoogle ScholarPubMed
Wise, A. (1983). Dietary factors determining the biological activities of phytate. Nutrition Abstracts and Reviews B 53, 791806.Google Scholar
Wong, K. K. Y. & Saddler, J. N. (1992). Trichoderma xylanases, their properties and application. Critical Reviews in Biotechnology 12, 413435.CrossRefGoogle Scholar
Wyatt, C. L., Moran, E. & Bedford, M. R. (1997 a). Utilizing feed enzymes to enhance the nutritional value of cornbased broiler diets. Poultry Science 76 (Suppl. 1), 39.Google Scholar
Wyatt, C. L., Soto-Salanova, M. & Pack, M. (1997 b). Applying enzymes to sorghum-based broiler diets. Proceedings, Australian Poultry Science Symposium 9, 116118.Google Scholar
Yenigun, O., Kizilgun, F. & Yilmazer, G. (1996). Inhibition effects of zinc and copper on volatile fatty acid production during anaerobic digestion. Environmental Technology 17, 12691274.CrossRefGoogle Scholar
Yi, Z., Kornegay, E. T. & Denbow, D. M. (1996 a). Effect of microbial phytase on nitrogen and amino acid digestibility and nitrogen retention of turkey poults fed corn-soybean meal diets. Poultry Science 75, 979990.CrossRefGoogle ScholarPubMed
Yi, Z., Kornegay, E. T., Ravindran, V., Lindemann, M. D. & Wilson, J. H. (1996 a). Effectiveness of Natuphos® phytase in improving the bioavailabilities of phosphorus and other nutrients in soybean meal-based semipurified diets for young pigs. Journal of Animal Science 74, 16011611.CrossRefGoogle Scholar
Yoon, S. J., Choi, Y. J., Min, H. K., Cho, K. K., Kim, J. W., Lee, S. C. & Jung, Y. H. (1996). Isolation and identification of phytase-producing bacterium, Enterobacter sp.4, and enzymatic properties of phytase enzyme. Enzyme and Microbial Technology 18, 449454.CrossRefGoogle Scholar
Źyla, K. (1992). Mould phytases and their application in the food industry. World Journal of Microbiology and Biotechnology 8, 467472.Google Scholar
Źyla, K. (1993). The role of acid phosphatase activity during enzymic dephosphorylation of phytates by Aspergillus niger phytase. World Journal of Microbiology and Biotechnology 9, 117119.Google Scholar
Źyla, K., Ledoux, D. R. & Veum, T. L. (1995). Complete enzymic dephosphorylation of corn—soybean meal feed under simulated intesinal conditions of the turkey. Journal of Agricultural and Food Chemistry 43, 288294.CrossRefGoogle Scholar
You have Access
304
Cited by