Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T10:03:01.287Z Has data issue: false hasContentIssue false

A Novel Organosiloxane Vapor Annealing Process for Improving Elastic Modulus of Porous Low-k Films

Published online by Cambridge University Press:  17 March 2011

Kazuo Kohmura
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Shunsuke Oike
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Masami Murakami
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Hirofumi Tanaka
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Syozo Takada
Affiliation:
ASRC-AIST, Tsukuba, Japan
Yutaka Seino
Affiliation:
MIRAI-ASRC-AIST, Tsukuba, Japan
Takamaro Kikkawa
Affiliation:
MIRAI-ASRC-AIST, Tsukuba, Japan RCNS, Hiroshima Univ., Higashi-Hiroshima, Japan
Get access

Abstract

A novel organosiloxane-vapor-annealing method has been developed for improving the mechanical strength of porous silica films with a low dielectric constant. Treatment of a porous silica film with 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) under atmospheric nitrogen above 350 °C significantly enhanced the mechanical strength (i.e., elastic modulus and hardness) of the film. Results of Fourier transform infrared spectroscopy (FT-IR) and thermal desorption spectroscopy (TDS) suggested the formation of cross-linked poly(TMCTS) network on the porous silica internal wall surfaces by the TMCTS treatment. Such TMCTS cross-linked network is thought to enhance the mechanical strength of the low-k film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, J. Y., Pan, F. M., Cho, A. T., Chao, K. J., Tsai, T. G., Wu, B. W., Yang, C. M., and Chang, Li, J. Electrochem. Soc. 150, F123 (2003).CrossRefGoogle Scholar
2. Smith, D. M., Ramos, T., Roderick, K. H., Wallace, S., Drage, J., Wu, H. -J., Viernes, N. and Brungardt, L. B, US Patent 6395651 (2002).Google Scholar
3. Lu, Y., Fan, H., Doke, N., Loy, D. A., Assink, R. A., LaVan, D. A., and Brinker, C. J., J. Am. Chem. Soc. 122, 5258 (2000).CrossRefGoogle Scholar
4. Ting, C. -Y., Ouyan, D. -F. and Wan, B. -Z., J. Electrochem. Soc. 150, F126 (2003).CrossRefGoogle Scholar
5. Ogawa, M., Chem. Commun. 1149 (1996).Google Scholar
6. Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W., Guo, Y., Soyes, H., Dunn, B., Huang, M. H., and Zink, J. I., Nature 389, 364 (1997).CrossRefGoogle Scholar
7. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B. F., and Stucky, G. D., Adv. Mater. 10, 1380 (1998).3.0.CO;2-8>CrossRefGoogle Scholar
8. Fukui, H., J. Soc. Cosmet. Chem. Jpn. 27, 3 (1993).CrossRefGoogle Scholar