Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-09T22:09:28.245Z Has data issue: false hasContentIssue false

Evaluation of Thin Dielectric-Glue Wafer-Bonding for Three Dimensional Integrated Circuit-Applications

Published online by Cambridge University Press:  17 March 2011

Y. Kwon
Affiliation:
Focus Center - New York, Rensselaer: Interconnections for Hyperintegration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
J. Yu
Affiliation:
Focus Center - New York, Rensselaer: Interconnections for Hyperintegration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
J.J. McMahon
Affiliation:
Focus Center - New York, Rensselaer: Interconnections for Hyperintegration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
J.-Q. Lu
Affiliation:
Focus Center - New York, Rensselaer: Interconnections for Hyperintegration Rensselaer Polytechnic Institute, Troy, New York 12180-3590, luj@rpi.edu
T.S. Cale
Affiliation:
Focus Center - New York, Rensselaer: Interconnections for Hyperintegration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
R.J. Gutmann
Affiliation:
Focus Center - New York, Rensselaer: Interconnections for Hyperintegration Rensselaer Polytechnic Institute, Troy, New York 12180-3590
Get access

Abstract

The critical adhesion energy of benzocyclobutene (BCB)-bonded wafers is quantitatively investigated with focus on BCB thickness, material stack and thermal cycling. The critical adhesion energy depends linearly on BCB thickness, increasing from 19 J/m2 to 31 J/m2 as the BCB thickness increases from 0.4 μm to 2.6 μm, when bonding silicon wafers coated with plasma enhanced chemical vapor deposited (PECVD) silicon dioxide (SiO2). In thermal cycling performed with 350 and 400 oC peak temperatures, the significant increase in critical adhesion energy at the interface between BCB and PECVD SiO2 during the first thermal cycle is attributed to relaxation of residual stress in the PECVD SiO2 layer. On the other hand, the critical adhesion energy at the interface between BCB and PECVD silicon nitride (SiNx) decreases due to the increase of residual stress in the PECVD SiNx layer during the first thermal cycle.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lu, J.-Q., Kwon, Y., McMahon, J.J., Jindal, A., Altemus, B., Cheng, D., Eisenbraun, E., Cale, T.S., and Gutmann, R.J., in 20th International VLSI Multilevel interconnection Conference (VMIC 2003), 227 (2003).Google Scholar
2. Gutmann, R.J., Lu, J.-Q., Pozder, S., Kwon, Y., Jindal, A., Celik, M., McMahon, J.J., Yu, K., and Cale, T.S., in Advanced Metallization Conference in 2003 (AMC 2003), 19 (2003).Google Scholar
3. Kwon, Y., Jindal, A., McMahon, J.J., Lu, J.-Q., Gutmann, R.J., and Cale, T.S., in MRS Symp. Proc., Vol. 766, E5.8.1 (2003).CrossRefGoogle Scholar
4. Processing Procedures for Dry-Etch Cyclotene Advanced Electronics Resins, Dow Chemical Company, Midland, MI, 1997.Google Scholar
5. Kwon, Y., Lu, J.-Q., Cale, T.S., and Gutmann, R.J., in International Conference on Microelectronics and Interfaces (ICMI'04), 40 (2004).Google Scholar
6. Sha, Y., Hui, C.Y., Kramer, E.J., Hahn, S.F., and Berglund, C.A., Macromolecules, 29, 4728 (1996).CrossRefGoogle Scholar
7. Volinsky, A.A., Moody, N.R., and Gerberich, W.W., Acta Met., 50, 441 (2002).CrossRefGoogle Scholar
8. Litteken, C.S., and Dauskardt, R.H., Int. J. Fract., 119/120, 475 (2003).CrossRefGoogle Scholar
9. Varias, A.G., Suo, Z., and Shih, C.F., J. Mech. Phys. Solids, 39, 963 (1991).CrossRefGoogle Scholar
10. Hohlfelder, R.J., Maidenberg, D.A., Dauskardt, R.H., Wei, Y.G., and Hutchinson, J.W., J. Mater. Res., 16, 243 (2001).CrossRefGoogle Scholar
11. Chen, F., Li, B.Z., Sullivan, T.D., Gonzalez, C.L., Muzzy, C.D., Lee, H.K., Dashiell, M.W., Kolodzey, J., and Levy, M.D., J. Vac. Sci. Technol. B, 18, 2826 (2000).CrossRefGoogle Scholar
12. Karabacak, T., Zhao, Y.-P., Wang, G.-C., and Lu, T.-M., Phys. Rev. B, 66, 075329 (2002).CrossRefGoogle Scholar
13. Toivola, Y., Thurn, J., Cook, R.F., Cibuzar, G., and Roberts, K., J. Appl. Phys., 94, 6915 (2003).CrossRefGoogle Scholar