Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-17T12:17:09.545Z Has data issue: false hasContentIssue false

Effect of mass transport along interfaces and grain boundaries on copper interconnect degradation

Published online by Cambridge University Press:  17 March 2011

Ehrenfried Zschech
Affiliation:
AMD Saxony LLC & Co. KG, Materials Analysis Department, P. O. Box 11 01 10, D-01330 Dresden, Germany
Moritz A. Meyer
Affiliation:
AMD Saxony LLC & Co. KG, Materials Analysis Department, P. O. Box 11 01 10, D-01330 Dresden, Germany
Eckhard Langer
Affiliation:
AMD Saxony LLC & Co. KG, Materials Analysis Department, P. O. Box 11 01 10, D-01330 Dresden, Germany
Get access

Abstract

In-situ SEM electromigration studies were performed at fully embedded via/line interconnect structures to visualize the time-dependent void evolution in inlaid copper interconnects. Void formation, growth and movement, and consequently interconnect degradation, depend on both interface bonding and copper microstructure. Two phases are distinguished for the electromigration-induced interconnect degradation process: In the first phase, agglomerations of vacancies and voids are formed at interfaces and grain boundaries, and voids move along weak interfaces. In the second phase of the degradation process, they merge into a larger void which subsequently grows into the via and eventually causes the interconnect failure. Void movement along the copper line and void growth in the via are discontinuous processes, whereas their step-like behavior is caused by the copper microstructure. Directed mass transport along inner surfaces depends strongly on the crystallographic orientation of the copper grains. Electromigration lifetime can be drastically increased by changing the copper/capping layer interface. Both an additional CoWP coating and a local copper alloying with aluminum increase the bonding strength of the top interface of the copper interconnect line, and consequently, electromigration-induced mass transport and degradation processes are reduced significantly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lane, M. W., Liniger, E. G., Lloyd, J. R.; Appl. Phys. Lett. 93, 1417 (2003)Google Scholar
[2] Lane, M., Rosenberg, R., Mater. Res. Soc. Proc. 766, (2003) (in press)CrossRefGoogle Scholar
[3] Spolenak, R., Zschech, E., “Interconnects for Microelectronics” in “Metal Based Thin Films for Electronics”, ed. Wetzig, K., Schneider, C. M. (Wiley-VCH, Berlin, 2003) pp. 724 CrossRefGoogle Scholar
[4] Ho, P. S., Lee, K. D., Ogawa, E. T., Yoon, S., Lu, X., in Characterization and Metrology for ULSI Technology, ed. Seiler, D. G. et al. , AIP Conf. Proc. (AIP: Melville, NY, 2003), pp. 533539 Google Scholar
[5] Diamand, Y. Schacham, Sverdlov, Y., Petrov, N., Li, Z., Croitoru, N., Inberg, A., Gileadi, E., Kohn, A., Eizenberg, M., Proc. Electrochem. Soc. 99–34, 102 (2000)Google Scholar
[6] Hu, C. K., Gignac, L., Rosenberg, R., Liniger, E., Rubino, J., Sambucetti, C., Domenicucci, A., Chen, X., Stamper, A. K., Appl. Phys. Lett. 81, 1782 (2002)Google Scholar
[7] Hu, C. K., Gignac, L., Rosenberg, R., Liniger, E., Rubino, J., Sambucetti, C., Stamper, A. K., Domenicucci, A., Chen, X., Microelectronic Engineering 70, 406 (2003)Google Scholar
[8] Hu, C. K., Canaperi, D., Chen, S. T., Gignac, L. M., Herbst, B., Kaldor, S., Liniger, E., Rath, D. L., Restaino, D., Rosenberg, R., Rubino, J., Simon, A., Smith, S., Tseng, W. T., submitted to Appl. Phys. Lett.Google Scholar
[9] Meyer, M. A., Grafe, M., Engelmann, H. J., Zschech, E., Materials for Advanced Metallization Conference (MAM), Brussels (2004)Google Scholar
[10] Hu, C. K., Malhotra, S. G., Gignac, L., Electrochem. Soc. Proc. 31, 206 (1999)Google Scholar
[11] Ogawa, E. T., Lee, K. D., Blaschke, V. A., Ho, P. S., IEEE Transaction on Reliability 51, 403 (2002)Google Scholar
[12] Zschech, E., Geisler, H., Zienert, I., Prinz, H., Langer, E., Meyer, M. A., Schneider, G., Proc. of the Advanced Metallization Conference (AMC), San Diego, 305 (2002)Google Scholar
[13] Meyer, M. A., Herrmann, M., Langer, E., Zschech, E., Microelectronics Engineering 64, 375 (2002)Google Scholar
[14] Schneider, G., Denbeaux, G., Anderson, E. H., Bates, B., Pearson, A., Meyer, M. A., Zschech, E., Hambach, D., Stach, E. A., Appl. Phys. Lett. 81, 2535 (2002)Google Scholar
[15] Sukharev, V., Choudhury, R., Park, C. W., Proc. ECD Meeting, Paris (2003) (in press)Google Scholar
[16] Reed-Hill, R. E., Physical Metallurgy Principles, (D. Van Nostrand Co., New York, 1973), p. 626 Google Scholar
[17] Zschech, E., Blum, W., Zienert, I., Besser, P. R., Z. Metallkd. 92, 803 (2001)Google Scholar
[18] Meyer, M. A., Zschech, E., Langer, E., US patent application 10/677,911 (2003)Google Scholar
[19] Liniger, E., Gignac, L., Hu, C. K., Kaldor, S., J. Appl. Phys. 92, 1803 (2002)CrossRefGoogle Scholar
[20] Langer, E., Meyer, M. A., Zschech, E., Herrmann, M., in Proc. Int. Symp. for Testing and Failure Analysis (ISTFA), (2002) (in press)Google Scholar
[21] Vairagar, A. V., Krishnamoorthy, A., Tu, K. N., Mhaisalkar, S. G., Gusak, A. M., Meyer, M. A., Zschech, E., submitted to J. Appl. Phys.Google Scholar
[22] Zschech, E., Langer, E., Meyer, M. A., Proc. IPFA, (2003) (in press)Google Scholar
[23] Hu, C. K., Rosenberg, R., Lee, K. L., Appl. Phys. Lett. 74, 2945 (1999)CrossRefGoogle Scholar
[24] Edelstein, D., Uzoh, C., Cabral, C. Jr, Dehaven, P., Buchwalter, P., Simon, A., Cooney, E., Malhotra, S., Klaus, D., Rathore, H., Agarwala, B., Nguyen, D., Proc. of the International Interconnect Technology Conference (IITC), (Piscataway, NJ, 2001), p. 9 Google Scholar
[25] Hau-Riege, C. S., Thompson, C. V., Appl. Phys. Lett. 78, 3451 (2001)CrossRefGoogle Scholar
[26] Lee, K. D., Ogawa, E. T., Matsuhashi, H., Justison, P. R., Ko, K. S., Ho, P. S., Blaschke, V. A., Appl. Phys. Lett. 79, 3236 (2001)Google Scholar
[27] Hu, C. K., Gignac, L., Malhotra, S. G., Rosenberg, R., Appl. Phys. Lett. 904 (2001)Google Scholar
[28] Yokogawa, S., Okada, N., Kakuhara, Y., Takizawa, H., Microelectronics Reliability 1409 (2001)Google Scholar
[29] Guo, Q., Krishnamoorthy, A., Huang, N. Y., Foo, P. D., in Proc. of the Advanced Metallization Conference (AMC), San Diego, 191 (2002)Google Scholar
[30] Handbook of Grain and Interphase Boundary Diffusion Data, ed. Kaur, I. and Gust, W. (Ziegler Press, Stuttgart, 1989)Google Scholar
[31] Gupta, D., Hu, C. K., Lee, K. L., Defect Diffusion Forum 143, 1397 (1997)Google Scholar
[32] Peterson, N. I., J. Nucl. Mater. 69&70, 3 (1970)Google Scholar
[33] Gupta, D., in Diffusion Phenomena in Thin Films and Microelectronics Materials, ed. Gupta, D., Ho, P. S. (Noyes, Park Ridge, NJ, 1988), Chapter 1Google Scholar
[34] Spolenak, R., Alloying Effects in Electromigration, PhD Thesis, University Stuttgart (1999)Google Scholar
[35] Bonzel, H. P., Surface Physics of Materials II, ed. By Blakely, J. M. (Academic, New York, 1975), Chapter 6Google Scholar
[36] Knorr, N., Brune, H., Epple, M., Hirstein, A., Schneider, M. A., Kern, K., Phys. Rev. B 65, 115420 (2002)Google Scholar
[37] Montalenti, F., Ferrando, R., Phys. Rev. B 59, 5881 (1999)Google Scholar
[38] Robinson, I. K., Whiteaker, K. L., Walko, D. A., Physica B 221, 70 (1996)CrossRefGoogle Scholar
[39] Krishnamoorthy, A., Qiang, G., Vairagar, A. V., Mhaisalkar, S., Mater. Res. Soc. Proc. 766, (2003) (in press)Google Scholar
[40] Ho, P. S., private communicationGoogle Scholar