Hostname: page-component-797576ffbb-xmkxb Total loading time: 0 Render date: 2023-12-07T07:13:28.368Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Quantum Simulation of C-V and I-V Characteristics in Ge and III-V Materials/High-κ MOS Devices

Published online by Cambridge University Press:  31 January 2011

Mathieu Moreau
Affiliation:, IM2NP-CNRS, Marseille, France
Daniela Munteanu
Affiliation:, IM2NP-CNRS, Marseille, France
Jean-Luc Autran
Affiliation:, IM2NP-CNRS, Marseille, France
Florence Bellenger
Affiliation:, IMEC and KU Leuven, Leuven, Belgium
Jérome Mitard
Affiliation:, IMEC, Leuven, Belgium
Michel Houssa
Affiliation:, IMEC and KU Leuven, Leuven, Belgium
Get access


We present a one-dimensional simulation study of the capacitance-voltage (C-V) and current-voltage (I-V) characteristics in MOS devices with high mobility semiconductors (Ge and III-V materials) and non-conventional gate stack with high-κ dielectrics. The C-V quantum simulation code self-consistently solves the Schrödinger and Poisson equations and the electron transport through the gate stack is computed using the non-equilibrium Green’s function formalism (NEGF). Simulated C-V characteristics are successfully confronted to experimental data for various MOS structures with different semiconductors and dielectric stacks. Simulation of I-V characteristics reveals that gate leakage current strongly depends on gate stacks and substrate materials and predicts low leakage current for future CMOS devices with high mobility materials and high-κ dielectrics.

Research Article
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 Laux, S. E., IEEE Trans. Electron Dev. 54, 2304 (2007).10.1109/TED.2007.902864Google Scholar
2 Houssa, M. and Heyns, M. M., in High-κ Gate Dielectrics, edited by Houssa, M. (IOP Publishing, Bristol, U. K., 2004), Chap. Scholar
3 Delabie, A., Bellenger, F., Houssa, M., Conard, T., Elshocht, S. Van, Caymax, M., Heyns, M., and Meuris, M., Appl. Phys. Lett. 91, 082904 (2007).10.1063/1.2773759Google Scholar
4 Xie, R., Phung, T. H., He, W., Sun, Z., Yu, M., Cheng, Z., and Zhu, C., IEDM 08 Proceedings, 393 (2008).Google Scholar
5 Nakakita, Y., Nakane, R., Sasada, T., Matsubara, H., Takaneka, M., and Takagi, S., IEDM 08 Proceedings, 877 (2008).Google Scholar
6 Andersson, C., Sousa, M., Marchiori, C. M., Webb, D. J., Caimi, D., Siegwart, H., Fompeyrine, J., Rossel, C., Dimoulas, A., and Panayiotatos, Y., ESSDERC 09 Proceedings, 179 (2009).Google Scholar
7 Lin, T. D., Chiu, H. C., Chang, P., Chang, Y. H., Lin, C. A., Chang, W. H., Kwo, J., Tsai, W., and Hong, M., ESSDERC 09 proceedings, 399 (2009).Google Scholar
8 Xuan, Y., Wu, Y. Q., and Ye, P. D., IEEE Electron Devices Lett. 29, 294 (2008).10.1109/LED.2008.917817Google Scholar
9 Mitard, J. et al., IEDM 08 Proceedings, 873 (2008).Google Scholar
10 Bai, W. P., Lu, N., Ritenour, A., Lee, M. L., Antoniadis, D. A., and Kwong, D.-L., IEEE Electron Devices Lett. 27, 175 (2006).10.1109/LED.2006.870242Google Scholar
11 Raynaud, C., Autran, J.-L., Masson, P., Bidaud, M., and Poncet, A. in Structure and Electronic Properties of Ultrathin Dielectric Films on Silicon and Related Structures, edited by Bardeleben, H.J. von, Edwards, A.H., Hattori, T., and Buchanan, D.A., (Mater. Res. Soc. Symp. Proc. 592>, Warrendale, PA, 2000) 190.,+Warrendale,+PA,+2000)+190.>Google Scholar
12 Moreau, M., Munteanu, D., Autran, J. L., Bellenger, F., Mitard, J., and Houssa, M., J. NonCryst. Solids 355, 1171 (2009).10.1016/j.jnoncrysol.2009.01.056Google Scholar
13 Li, F., Mudanai, S. P., Fan, Y.-Y., Register, L. F., and Banerjee, S. K., IEEE Trans. Electron Dev. 53, 1096 (2006).Google Scholar
14 Wang, W., Gu, N., Sun, J. P., Mazumder, P., Solid-State Electron. 50, 1489 (2006).10.1016/j.sse.2006.08.004Google Scholar
15 Moreau, M., Munteanu, D., and Autran, J. L., Jpn. J. Appl. Phys. 48, (2009) (in press).10.1143/JJAP.48.111409Google Scholar
16 Datta, S., Superlattices Microstruct. 28, 253 (2000).10.1006/spmi.2000.0920Google Scholar
17 Munteanu, D., Autran, J. L., Moreau, M., and Houssa, M., J. Non-Cryst. Solids 355, 1180 (2009).10.1016/j.jnoncrysol.2009.03.006Google Scholar
18 Afanas'ev, V. V., Stesmans, A., Delabie, A., Bellenger, F., Houssa, M., and Meuris, M., Appl. Phys. Lett. 92, 022109 (2008).10.1063/1.2831668Google Scholar
19 Scholar
20 Robertson, J. and Falabretti, B., J. Appl. Phys. 100, 014111 (2006).10.1063/1.2213170Google Scholar