Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-k7f5t Total loading time: 0.367 Render date: 2022-01-27T05:30:37.524Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

High Mobility Channel Materials and Novel Devices for Scaling of Nanoelectronics beyond the Si Roadmap

Published online by Cambridge University Press:  31 January 2011

Marc Heyns
Affiliation:
Heyns@imec.be, imec, Leuven, Belgium
Florence Bellenger
Affiliation:
Florence.Bellenger@imec.be, imec, Leuven, Belgium
Guy Brammertz
Affiliation:
Guy.Brammertz@imec.be, imec, Leuven, Belgium
Matty Caymax
Affiliation:
Matty.Caymax@imec.be, imec, Leuven, Belgium
Stefan De Gendt
Affiliation:
stefan.degendt@imec.be, imec, Leuven, Belgium
Brice De Jaeger
Affiliation:
Brice.DeJaeger@imec.be, imec, Leuven, Belgium
Annelies Delabie
Affiliation:
Annelies.Delabie@imec.be, imec, Leuven, Belgium
Geert Eneman
Affiliation:
Geert.Eneman@imec.be, imec, Leuven, Belgium
Guido Groeseneken
Affiliation:
Guido.Groeseneken@imec.be, imec, Leuven, Belgium
Michel Houssa
Affiliation:
michel.houssa@fys.kuleuven.be, KULeuven, Leuven, Belgium
Daniele Leonelli
Affiliation:
Daniele.Leonelli@imec.be, imec, Leuven, Belgium
Dennis Lin
Affiliation:
Dennis.Lin@imec.be, imec, Leuven, Belgium
Koen Martens
Affiliation:
Martens.Koen@imec.be, imec, Leuven, Belgium
Clement Merckling
Affiliation:
clement.merckling@imec.be, imec, Leuven, Belgium
Marc Meuris
Affiliation:
Marc.Meuris@imec.be, imec, Leuven, Belgium
Jerome Mitard
Affiliation:
Jerome.Mitard@imec.be, imec, Leuven, Belgium
Julien Penaud
Affiliation:
julien.penaud@imec.be, Riber, Leuven, Belgium
Geoffrey Pourtois
Affiliation:
Geoffrey.Pourtois@imec.be, imec, Leuven, Belgium
Marco Scarrozza
Affiliation:
Marco.Scarrozza@imec.be, imec, Leuven, Belgium
Eddy Simoen
Affiliation:
eddy.simoen@imec.be, imec, Leuven, Belgium
Sven Van Elshocht
Affiliation:
Sven.VanElshocht@imec.be, imec, Leuven, Belgium
William Vandenberghe
Affiliation:
William.Vandenberghe@imec.be, imec, Leuven, Belgium
Anne Vandooren
Affiliation:
anne.vandooren@imec.be, imec, Leuven, Belgium
Wei-E Wang
Affiliation:
WeiE.Wang@imec.be, INTEL, Leuven, Belgium
Get access

Abstract

High mobility channel materials and new device structures will be needed to meet the power and performance specifications in future technology nodes. Therefore, the use of Ge and III/V materials and novel devices such as heterojunction TunnelFET’s is investigated for future CMOS applications. High-performance CMOS can be obtained by combining Ge pMOS devices with nMOS devices made on III/V compounds such as InGaAs. In all cases the key challenge is the electrical passivation of the interface between the high-k dielectric and the alternative channel materials. Recent studies have demonstrated good electrical properties of the GeO2/Ge interface. Since the GeO2 layer is very hygroscopic, full in-situ processing of GeO2 formation and high-k deposition must be performed or other methods must be employed to stabilize the GeO2 layer. One of the most successful passivation techniques for Ge MOS gate stacks is a thin, epitaxial layer of Si. A lot of attention went into better understanding of this passivation and the effects of its optimization on various device characteristics. It was found that mobility and Vt trends in both pMOS and nMOS transistors can be explained based on defects located at the Si/SiO2 interface. Unfortunately, III-V/oxide interfaces are not quite as robust and most interfaces present rather high densities of interface states. Although, considerable improvements have been realized in the reduction of the interface state density, further developments are required to obtain high performance MOS devices. To this purpose various passivation methods were critically evaluated. Simulations using Density Functional Theory reveal the possibility of using a thin amorphous layer made of GeOX to obtain an electrically unpinned gap. The major challenge resides in the control of the c-Ge thickness and the oxidation of this layer to avoid the diffusion of oxygen atoms at the Ge/GaAs(001) interface. Promising results are obtained by optimizing the surface preparation, high-k deposition and annealing cycle on In0.53Ga0.47As-Al2O3 interfaces. Self-aligned inversion channel n-MOSFETs fabricated on p-type In0.53Ga0.47As demonstrate inversion-mode operation with high drive current and a peak electron mobility of 3000 cm2/Vs. Since ultimately the major showstopper on the scaling roadmap is not device speed, but rather power density, the introduction of these advanced materials will have to go together with the introduction of new device concepts. Novel structures such as heterojunction TunnelFET’s can fully exploit the properties of these new materials and provide superior performance at lower power consumption by virtue of their improved subthreshold behaviour. Vertical surround gate devices produced from nanowires allow the introduction of a wide range of materials on Si. This illustrates the possibilities that are created by the combination of new materials and devices to allow scaling of nanoelectronics beyond the Si roadmap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bellenger, F., Houssa, M., Delabie, A., Afanasiev, V., Conard, T., Caymax, M., Meuris, M., Meyer, K. De and Heyns, M.M., Journal of the Electrochemical Society 155, 2, p. 33, (2008)10.1149/1.2819626CrossRefGoogle Scholar
2 Houssa, M., Pourtois, G., Caymax, M., Meuris, M. and Heyns, M.M., Surface Science 602, p. 25 (2008)10.1016/j.susc.2007.12.040CrossRefGoogle Scholar
3 Prabhakaran, K., Maeda, F., Watanabe, Y. and Ogino, T., Thin Solid Films 369, p. 289, (2000)10.1016/S0040-6090(00)00881-6CrossRefGoogle Scholar
4 Hosoi, T., Kutsuki, K., Okamoto, G., Saito, M., Shimura, T. and Watanabe, H., Appl. Phys. Lett. 94, 202112 (2009)10.1063/1.3143627CrossRefGoogle Scholar
5 Merckling, C., Penaud, J., Kohen, D., Bellenger, F., Alian, A., Brammertz, G., El-Kazzi, M., Houssa, M., Dekoster, J., Caymax, M., Meuris, M. and Heyns, M.M., Microelectronic Engineering 86(7-9), 1592 (2009)10.1016/j.mee.2009.03.048CrossRefGoogle Scholar
6 Caymax, M., Leys, F., Mitard, J., Martens, K., Yang, L., Pourtois, G., Vandervorst, W., Meuris, M. and Loo, R., Journal of The Electrochemical Society, 156 12 H979–H985, 2009 10.1149/1.3240880CrossRefGoogle Scholar
7 Tsu, R., Xiao, H.Z., Kim, Y.-W., Hasan, M.-A., Birnbaum, H.K. and Greene, J.E., Journal of Applied Physics, 75(1), 240 (1994)10.1063/1.355890CrossRefGoogle Scholar
8 Zaima, S., Sato, K., Kitani, T., Matsuyama, T., Ikeda, H. and Yasuda, Y., Journal of Crystal Growth, Vol. 150, 944 (1995)10.1016/0022-0248(95)80079-RCrossRefGoogle Scholar
9 Yang, L., Pourtois, G., Caymax, M., Ceulemans, A. and Heyns, M., Phys. Rev. B, Vol. 79, 165312 (2009)10.1103/PhysRevB.79.165312CrossRefGoogle Scholar
10 Leys, F.E., Bonzom, R., Kaczer, B., Janssens, T., Vandervorst, W., Jaeger, B. De, Steenbergen, J. Van, Martens, K., Hellin, D., Rip, J., Dilliway, G., Delabie, A., Zimmerman, P., Houssa, M., Theuwis, A., Loo, R., Meuris, M., Caymax, M. and Heyns, M.M., Mater. Sci. Semic. Process. issue 4-5 (2006)Google Scholar
11 Mitard, J., Jaeger, B. De, Leys, F., Hellings, G., Martens, K., Eneman, G., Brunco, D., Loo, R., Lin, J., Shamiryan, D., Vandeweyer, T., Winderickx, G., Vrancken, E., Yu, C., Meyer, K. De, Caymax, M., Pantisano, L., Meuris, M., Heyns, M., in: 2008 IEEE International Electron Devices Meeting ) IEDM ‘08, 2008, pp. 873876 (2008)Google Scholar
12 Martens, K., Chui, C.O., Brammertz, G., Jaeger, B. De, Kuzum, D., Meuris, M., Heyns, M., Krishnamohan, T., Saraswat, K., Maes, H.E. and Groeseneken, G., “On the Correct Extraction of Interface Trap Density of MOS, IEEE Transactions on Electron Devices, Vol. 55, no. 2 (2008)10.1109/TED.2007.912365CrossRefGoogle Scholar
13 Mitard, J., Martens, K., DeJaeger, B., Franco, J., Shea, C., Plourde, C., Leys, F.E., Loo, R., Hellings, G., Eneman, G., Wang, Wei-E, Lin, J.C., Kaczer, B., DeMeyer, K., Hoffmann, T., Gendt, S. De, Caymax, M., Meurisl, M. and Heyns, M.M., Proceedings 39th European Solid) State Device Research Conference, ESSDERC 2009 Google Scholar
14 Martens, K., Mitard, J., Jaeger, B. De, Meuris, M., Maes, H., Groeseneken, G., Minucci, F. and Crupi, F., Proceedings 38th European Solid-State Device Research Conference ESSDERC 2008 Google Scholar
15 Lee, L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T., and Lochtefeld, A., Journal of Applied Physics, AP Review, 97, 011101 (2005)10.1063/1.1819976CrossRefGoogle Scholar
16 Batail, E., Monfray, S., Tabone, C., Kermarrec, O., Damlencourt, J., Gautier, P., Rabille, G., Arvet, C., Loubet, N., Campidelli, Y., Hartmann, J., Pouydebasque, A., Delaye, V., Royer, C. L., Ghibaudo, G., Skotnicki, T., Deleonibus, S., in: 2008 IEEE International Electron Devices Meeting - IEDM ‘08, 2008, pp. 397400.Google Scholar
17 Hellings, G., Mitard, J., Eneman, G., Jaeger, B. De, Brunco, D., Shamiryan, D., Vandeweyer, T., Meuris, M., Heyns, M., Meyer, K. De, IEEE Electron Device Letters 30 (1) (2009) 8890.10.1109/LED.2008.2008824CrossRefGoogle Scholar
18 Yamamoto, T., Yamashita, Y., Harada, M., Taoka, N., Ikeda, K., Suzuki, K., Kiso, O., Sugiyama, N., Takagi, S., in: 2007 IEEE International Electron Devices Meeting - IEDM ‘07, 2007, pp. 10411043.Google Scholar
19 Feng, J., Woo, R., Chen, S., Liu, Y., Griffin, P., IEEE Electron Device Letters 28 (7) (2007) 637639.10.1109/LED.2007.899329CrossRefGoogle Scholar
20 Krishnamohan, T., Krivokapic, Z., Uchida, K., Nishi, Y., Saraswat, K., IEEE Transactions on Electron Devices 53 (5) (2006) 990999.10.1109/TED.2006.872362CrossRefGoogle Scholar
21 Jaeger, B. De, Kaczer, B., Zimmerman, P., Opsomer, K., Winderickx, G., Steenbergen, J. Van, Moorhem, E. Van, Terzieva, V., Bonzom, R., Leys, F., Arena, C., Bauer, M., Werkhoven, C., Caymax, M., Meuris, M., Heyns, M., Semiconductor Science and Technology 22 (1) (2007) S221–S226.10.1088/0268-1242/22/1/S52CrossRefGoogle Scholar
22 Nicholas, G., Jaeger, B. De, Brunco, D., Zimmerman, P., Eneman, G., Martens, K., Meuris, M., Heyns, M., IEEE Transactions on Electron Devices 54 (9) (2007) 25032511.10.1109/TED.2007.902732CrossRefGoogle Scholar
23 Wang, G., Leys, F. E., Souriau, L., Loo, R., Caymax, M., Brunco, D. P., Geypen, J., Bender, H., Meuris, M., Vandervorst, W., Heyns, M. M., ECS Transactions 16 (10) (2008) 829836.10.1149/1.2986842CrossRefGoogle Scholar
24 Eneman, G., Jaeger, B. De, Wang, G., Mitard, J., Hellings, G., Brunco, D. P., Simoen, E., Loo, R., Caymax, M., Claeys, C., Meyer, K. De, Meuris, M. and Heyns, M.M., to be published in Thin Solid Films (2009)Google Scholar
25 Eneman, G., Wiot, M., Brugere, A., Casain, O., Sonde, S., Brunco, D., Jaeger, B. De, Satta, A., Hellings, G., Meyer, K. De, Claeys, C., Meuris, M., Heyns, M., Simoen, E., IEEE Transactions on Electron Devices 55 (9) (2008) 22872296.10.1109/TED.2008.927660CrossRefGoogle Scholar
26 Mitard, J., Shea, C., Jaeger, B. De, Pristera, A., Wang, G., Houssa, M., Eneman, G., Hellings, G., Wang, W.-E., Lin, J., Leys, F., Loo, R., Winderickx, G., Vrancken, E., Stesmans, A., DeMeyer, K., Caymax, M., Pantisano, L., Meuris, M. and Heyns, M., in: VLSI Symposium Tech. Dig., 2009, pp. 8283.Google Scholar
27 Brammertz, G., Lin, H.C., Alian, A., Merckling, C., Penaud, J., Kohen, D., Wang, W.-E, Sioncke, S., Delabie, A., Meuris, M., Caymax, M. and Heyns, M., ECS Transactions Vol. 19 Issue 5, p. 375 (2009)10.1149/1.3119560CrossRefGoogle Scholar
28 Simoen, E., to be published (2009).Google Scholar
29 Brammertz, G., Martens, K., Sioncke, S., Delabie, A., Caymax, M., Meuris, M., and Heyns, M., Appl. Phys. Lett. 91, 133510 (2007).10.1063/1.2790787CrossRefGoogle Scholar
30 Delabie, A., Brunco, D. P., Conard, T., Favia, P., Bender, H., Franquet, A., Sioncke, S., Vandervorst, W., Elshocht, S. Van, Heyns, M., Meuris, M., Kim, E., McIntyre, P. C., Saraswat, K. C., LeBeau, J. M., Cagnon, J., Stemmer, S. and Tsai, W., Journal of The Electrochemical Society, 155 (12), H937 (2008).10.1149/1.2979144CrossRefGoogle Scholar
31 Scarrozza, M., Pourtois, G., Houssa, M., Stesmans, A., Meuris, M., and Heyns, M. M., Presented at IEEE SISC 2008, December 11th - 13th, San Diego, USA (2008).Google Scholar
32 Scarrozza, M., Pourtois, G., Houssa, M., Caymax, M., Meuris, M., Heyns, M.M., Stesmans, A., Surface Science 603, 203 (2009).10.1016/j.susc.2008.11.002CrossRefGoogle Scholar
33 Xuan, Y., Wu, Y. Q., Lin, H. C., Shen, T., Ye, P. D., IEEE Electron Device Letters 28 (11), 935 (2007).10.1109/LED.2007.906436CrossRefGoogle Scholar
34 Lin, H.C., Wang, W.-E., Brammertz, G., Meuris, M. and Heyns, M., presented at INFOS 2009, Cambridge, U.K., June 29 – July 1, 2009 (to be published in the proceedings)Google Scholar
35 Verhulst, A.S., Vandenberghe, W.G., Leonelli, D., Rooyackers, R., Vandooren, A., Gendt, S. De, Heyns, M.M. and Groeseneken, G., ECS Transactions, 25 (7) 455462 (2009)10.1149/1.3203983CrossRefGoogle Scholar
36 Verhulst, A.S., Vandenberghe, W.G., Maex, K., and Groeseneken, G., J. Appl. Phys., 104, 064514 (2008).10.1063/1.2981088CrossRefGoogle Scholar
37 Bhuwalka, K.K., Schulze, J., and Eisele, I., IEEE Trans. Electron Devices, 52, 1541 (2005).10.1109/TED.2005.850618CrossRefGoogle Scholar
38 Toh, E.-H., Wang, G.H., Chan, L., Sylvester, D., Heng, C.-H., Samudra, G., and Yeo, Y.-C., Int. Conf. on Solid State Devices and Materials, 894 (2007)Google Scholar
39 Vandooren, A., Rooyackers, R., Leonelli, D., Iacopi, F., Kunnen, E., Nguyen, D., Demand, M., Ong, P., Willie, L., Moonens, J., Richard, O., Verhulst, A.S., Vandenberghe, W.G., Groeseneken, G., Gendt, S. De, Heyns, M., Silicon nanoelec. Workshop, Kyoto, Japan (2009).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Mobility Channel Materials and Novel Devices for Scaling of Nanoelectronics beyond the Si Roadmap
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High Mobility Channel Materials and Novel Devices for Scaling of Nanoelectronics beyond the Si Roadmap
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High Mobility Channel Materials and Novel Devices for Scaling of Nanoelectronics beyond the Si Roadmap
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *