Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-03T03:52:22.529Z Has data issue: false hasContentIssue false

Growth of Carbon Nanotubes on Mesoporous Silica Coated Planar and Three-Dimensional Surfaces

Published online by Cambridge University Press:  12 April 2013

Katrina Staggemeier
Affiliation:
Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336
Jin Ke
Affiliation:
Department of Chemistry, University of Canterbury, Canterbury, Christchurch, New Zealand
Alison Downard
Affiliation:
Department of Chemistry, University of Canterbury, Canterbury, Christchurch, New Zealand
Vladimir Golovko
Affiliation:
Department of Chemistry, University of Canterbury, Canterbury, Christchurch, New Zealand
Nitin Chopra
Affiliation:
Department of Materials and Metallurgical Engineering, The University of Alabama, Tuscaloosa.
Martin G. Bakker
Affiliation:
Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336
Get access

Abstract

Well ordered arrays of carbon nanotubes (CNTs) are of interest for a broad range of potential applications including energy storage and as catalyst supports. On some substrates such as copper and nickel, CNTs do not grow well or at all. We have previously shown that mesoporous silica thin films can be deposited onto metal substrates including copper and nickel, and that, after removal of the templating surfactant, the mesoporous silica film can be used as template for the electrodeposition of metals to give metal nanostructures.[Campbell et. al., Micro. Meso. Mater., 97, 114-121 (2006)] The size of the metal nanostructures makes them attractive as seeds for growth of CNTs. We have found that under appropriate conditions nickel deposited into mesoporous silica can act as catalyst for CNT growth on a number of different substrates including copper coated silicon wafers, and nickel foam. Using three different furnaces and different feed streams it was found that the growth is sensitive to carbon source; acetylene and ethylene both produced CNTs whereas attempts to produce CNTs using xylene have so far been unsuccessful.

Well ordered mesoporous silica thin films could potentially give arrays of nanorod seeds, leading to well ordered arrays of CNTs, SEM images of some of our samples show dense CNT arrays, but do not indicate significant ordering.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jarrah, N. A.; Li, F.; van Ommen, J. G.; Lefferts, L.Immobilization of a layer of carbon nanofibres (CNFs) on Ni foam: A new structured catalyst support”, J. Mater. Chem. 2005, 15, 19461953. DOI: 10.1039/b416977h CrossRefGoogle Scholar
McDonough, J. R.; Choi, J. W.; Yang, Y.; Mantia, F. L.; Zhang, Y.; Cui, Y.Carbon nanofiber supercapacitors with large areal capacitances”, Appl. Phys. Lett. 2009, 95, 243109/243101–243103. doi:10.1063/1.3273864 CrossRefGoogle Scholar
Yang, Y.; Lim, S.; Du, G.; Chen, Y.; Ciuparu, D.; Haller, G. L.Synthesis and Characterization of Highly Ordered Ni-MCM-41 Mesoporous Molecular Sieves”, Journal of Physical Chemistry B 2005, 109, 1323713246. DOI: 10.1021/jp044227i CrossRefGoogle ScholarPubMed
Ramesh, P.; Okazaki, T.; Taniguchi, R.; Kimura, J.; Sugai, T.; Sato, K.; Ozeki, Y.; Shinohara, H.Selective Chemical Vapor Deposition Synthesis of Double-Wall Carbon Nanotubes on Mesoporous Silica”, Journal of Physical Chemistry B 2005, 109, 11411147. DOI: 10.1021/jp0465736 CrossRefGoogle ScholarPubMed
Murakami, Y.; Yamakita, S.; Okubo, T.; Maruyama, S.Single-walled carbon nanotubes catalytically grown from mesoporous silica thin film”, Chem. Phys. Lett. 2003, 375, 393398. doi:10.1016/S0009-2614(03)00871-6 CrossRefGoogle Scholar
Huang, L.; Wind, S. J.; O’Brien, S. P.Controlled Growth of Single-Walled Carbon Nanotubes from an Ordered Mesoporous Silica Template”, Nano Lett. 2003, 3, 299303. DOI: 10.1021/nl025880p CrossRefGoogle Scholar
Zheng, G.; Zhu, H.; Luo, Q.; Zhou, Y.; Zhao, D.Chemical Vapor Deposition Growth of Well-Aligned Carbon Nanotube Patterns on Cubic Mesoporous Silica Films by Soft Lithography”, Chem. Mater. 2001, 13, 22402242.CrossRefGoogle Scholar
Cassell, A. M.; Verma, S.; Delzeit, L.; Meyyappan, M.; Han, J.Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes”, Langmuir 2001, 17, 260264. DOI: 10.1021/la001273a CrossRefGoogle Scholar
Shi, K.; Chi, Y.; Yu, H.; Xin, B.; Fu, H.Controlled Growth of Mesostructured Crystalline Iron Oxide Nanowires and Fe-Filled Carbon Nanotube Arrays Templated by Mesoporous Silica SBA-16 Film”, Journal of Physical Chemistry B 2005, 109, 25462551. DOI:10.1021/jp0463316 CrossRefGoogle ScholarPubMed
Cassiers, K.; Linssen, T.; Mathieu, M.; Benjelloun, M.; Schrijnemakers, K.; Van Der Voort, P.; Cool, P.; Vansant, E. F.A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas”, Chem. Mater. 2002, 14, 23172324. DOI:10.1021/cm0112892 CrossRefGoogle Scholar
Campbell, R.; Bakker, M. G.; Havrilla, G.; Montoya, V.; Kenik, E.; Shamsuzzoha, M.Preparation of Mesoporous Silica Templated Metal Nanowire Network Films on Foamed Nickel Substrates”, Micro. Meso. Mater. 2006, 97, 114121. DOI: 10.1016/j.micromeso.2006.08.011 CrossRefGoogle Scholar
Eustathopoulos, N.; Drevet, B.Determination of the nature of metal–oxide interfacial interactions from sessile drop data”, Mat. Sci. Eng. 1998, A249, 176183. PII S0921-5093(98)00521-8 CrossRefGoogle Scholar
Ziegler, K. J.; Harrington, P. A.; Ryan, K. M.; Crowley, T.; Holmes, J. D.; Morris, M. A.Supercritical fluid preparation of copper nanotubes and nanowires using mesoporous templates”, J. Phys.: Condens. Matter 2003, 15, 83038314. PII: S0953-8984(03)63513-7 Google Scholar
Smått, J.-H.; Sayler, F. M.; Grano, A.; Bakker, M. G.Formation of Hierarchically Porous Metal Oxide and Metal Monoliths by Nanocasting into Silica Monoliths”, Adv. Eng. Mat. 2012. DOI: 10.1002/adem.201100355 CrossRefGoogle Scholar