Hostname: page-component-6d856f89d9-vrt8f Total loading time: 0 Render date: 2024-07-16T08:02:13.391Z Has data issue: false hasContentIssue false

Gas adsorption by nanoporous materials: Future applications and experimental challenges

Published online by Cambridge University Press:  15 May 2013

Darren P. Broom
Affiliation:
Hiden Isochema Ltd., UK; dbroom@hidenisochema.com
K. Mark Thomas
Affiliation:
Wolfson Northern Carbon Reduction Laboratories, School of Chemical Engineering and Advanced Materials, Newcastle University, UK; mark.thomas@ncl.ac.uk
Get access

Abstract

There are numerous applications of nanoporous materials, including gas storage, separation, and purification. In recent years, the number of available nanoporous materials has increased substantially, with new material classes, such as metal-organic frameworks and microporous organic polymers, joining the traditional adsorbents, which include activated carbons, porous silicas, and zeolites. The determination of the gas adsorption properties of these materials is critical to both the development of new materials for targeted applications and the assessment of the suitability of a material for a particular technology. In this article, we provide an overview of nanoporous materials and their gas adsorption properties, existing and future applications for new materials, adsorption measurement methods, and the experimental challenges involved in the determination of gas adsorption both at elevated pressures and from multicomponent mixtures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ruthven, D.M., Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984).Google Scholar
Yang, R.T., Gas Separation by Adsorption Processes (Imperial College Press, London, UK, 1997).CrossRefGoogle Scholar
Talu, O., Adv. Colloid Interface Sci. 7677, 227 (1998).CrossRefGoogle Scholar
Ruthven, D.M., Ind. Eng. Chem. Res. 39 (7), 2127 (2000).CrossRefGoogle Scholar
Sircar, S., Myers, A.L., in Handbook of Zeolite Science and Technology, Auerbach, S.M., Carrado, K.A., Dutta, P.K., Eds. (Marcel Dekker, New York, 2003), p. 1354.Google Scholar
Sircar, S., Ind. Eng. Chem. Res. 45 (16), 5435 (2006).CrossRefGoogle Scholar
Sircar, S., Ind. Eng. Chem. Res. 46 (10), 2917 (2007).CrossRefGoogle Scholar
Ciesla, U., Schüth, F., Microporous Mesoporous Mater. 27 131 (1999).CrossRefGoogle Scholar
Edler, K.J., in Porous Materials, Bruce, D.W., O’Hare, D., Walton, R.I., Eds. (Wiley, Chichester, UK, 2011), p. 69.Google Scholar
Kondo, M., Yoshitomi, T., Matsuzaka, H., Kitagawa, S., Seki, K., Angew. Chem. Int. Ed. 36 (16), 1725 (1997).CrossRefGoogle Scholar
Li, H., Eddaoudi, M., Groy, T.L., Yaghi, O.M., J. Am. Chem. Soc. 120, 8571 (1998).CrossRefGoogle Scholar
Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M., Nature 402, 276 (1999).CrossRefGoogle Scholar
Férey, G., Chem. Soc. Rev. 37, 191 (2008).CrossRefGoogle Scholar
MacGillivray, L.R., Ed., Metal-Organic Frameworks: Design and Application (Wiley, New Jersey, 2010).CrossRefGoogle Scholar
Han, S.S., Furukawa, H., Yaghi, O.M., Goddard, W.A., J. Am. Chem. Soc. 130, 11580 (2008).CrossRefGoogle Scholar
McKeown, N.B., Budd, P.M., Msayib, K.J., Ghanem, B.S., Kingston, H.J., Tattershall, C.E., Makhseed, S., Reynolds, K.J., Fritsch, D., Chem. Eur. J. 11, 2610 (2005).CrossRefGoogle Scholar
McKeown, N.B., Budd, P.M., Book, D., Macromol. Rapid Comm. 28, 995 (2007).CrossRefGoogle Scholar
Jiang, J.-X., Cooper, A.I., Top. Curr. Chem. 293, 1 (2010).Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., Siemieniewska, T., Pure Appl. Chem. 57 (4), 603 (1985).CrossRefGoogle Scholar
Chagger, H.K., Ndaji, F.E., Sykes, M.L., Thomas, K.M., Carbon 33, 1405 (1995).CrossRefGoogle Scholar
Lobo, R.F., in Handbook of Zeolite Science and Technology, Auerbach, S.M., Carrado, K.A., Dutta, P.K., Eds. (Marcel Dekker, New York, 2003), p. 80.Google Scholar
Egeblad, K., Christensen, C.H., Kustova, M., Christensen, C.H., Chem. Mater. 20, 946 (2008).CrossRefGoogle Scholar
Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T., Schwieger, W., Adv. Mater. 23 (22–23), 2602 (2011).CrossRefGoogle Scholar
Pierre, A.C., Pajonk, G.M., Chem. Rev. 102, 4243 (2002).CrossRefGoogle Scholar
Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W., Chem. Rev. 112, 782 (2012).CrossRefGoogle Scholar
Fang, Q.-R., Makal, T.A., Young, M.D., Zhou, H.-C., Comments Inorg. Chem. 31, 165 (2010).CrossRefGoogle Scholar
Song, L., Zhang, J., Sun, L., Xu, F., Li, F., Zhang, H., Si, X., Jiao, C., Li, Z., Liu, S., Liu, Y., Zhou, H., Sun, D., Du, Y., Cao, Z., Gabelica, Z., Energy Environ. Sci. 5, 7508 (2012).CrossRefGoogle Scholar
Feng, X., Ding, X., Jiang, D., Chem. Soc. Rev. 41, 6010 (2012).CrossRefGoogle Scholar
Zhang, W., Li, C., Yuan, Y.P., Qiu, L.G., Xie, A.J., Shen, Y.H., Zhu, J.F., J. Mater. Chem. 20, 6413 (2010).CrossRefGoogle Scholar
Ding, S.-Y., Wang, W., Chem. Soc. Rev. 42, 548 (2013).CrossRefGoogle Scholar
Loucks, R.G., Reed, R.M., Ruppel, S.C., Jarvie, D.M., J. Sediment. Res. 79 (12), 848 (2009).CrossRefGoogle Scholar
White, C.M., Smith, D.H., Jones, K.L., Goodman, A.L., Jikich, S.A., LaCount, R.B., DuBose, S.B., Ozdemir, E., Morsi, B.I., Schroeder, K.T., Energy Fuels 19 (3), 659 (2005).CrossRefGoogle Scholar
Melnichenko, Y.B., He, L., Sakurovs, R., Kholodenko, A.L., Blach, T., Mastalerz, M., Radliński, A.P., Cheng, G., Mildner, D.F.R., Fuel 91 (1), 200 (2012).CrossRefGoogle Scholar
Busch, A., Gensterblum, Y., Int. J. Coal Geol. 87, 49 (2011).CrossRefGoogle Scholar
Ackley, M.W., Rege, S.U., Saxena, H., Microporous Mesoporous Mater. 61, 25 (2003).CrossRefGoogle Scholar
Fletcher, A.J., Thomas, K.M., Rosseinsky, M.J., J. Solid State Chem. 178 (8), 2491 (2005).CrossRefGoogle Scholar
Jagiełło, J., Sanghani, P., Bandosz, T.J., Schwarz, J.A., Carbon 30 (3), 507 (1992).CrossRefGoogle Scholar
Zhao, X.B., Xiao, B., Fletcher, A.J., Thomas, K.M., J. Phys. Chem. B 109, 8880 (2005).CrossRefGoogle Scholar
Tanabe, K.K., Cohen, S.M., Chem. Soc. Rev. 40, 498 (2011).CrossRefGoogle Scholar
Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., Rep. Prog. Phys. 62, 1573 (1999).CrossRefGoogle Scholar
Monson, P.A., Microporous Mesoporous Mater. 160, 47 (2012).CrossRefGoogle Scholar
Everett, D.H., Powl, J.C., J. Chem. Soc. Faraday Trans. 1 72, 619 (1976).CrossRefGoogle Scholar
Kaneko, K., Murata, K., Adsorption 3, 197 (1997).CrossRefGoogle Scholar
Ruthven, D.M., Chem. Ing. Tech. 83 (1–2), 44 (2011).CrossRefGoogle Scholar
Thomas, K.M., Dalton Trans. 1487 (2009).CrossRefGoogle Scholar
Broom, D.P., Hydrogen Storage Materials: The Characterisation of Their Storage Properties (Springer, London, UK, 2011).CrossRefGoogle Scholar
Konstas, K., Osl, T., Yang, Y., Batten, M., Burke, N., Hill, A.J., Hill, M.R., J. Mater. Chem. 22, 16698 (2012).CrossRefGoogle Scholar
Makal, T.A., Li, J.-R., Lu, W., Zhou, H.-C., Chem. Soc. Rev. 41, 7761 (2012).CrossRefGoogle Scholar
Li, J.-R., Sculley, J., Zhou, H.-C., Chem. Rev. 112, 869 (2012).CrossRefGoogle Scholar
Li, J.-R., Kuppler, R.J., Zhou, H.-C., Chem. Soc. Rev. 38, 1477 (2009).CrossRefGoogle Scholar
Zhao, X., Xiao, B., Fletcher, A.J., Thomas, K.M., Bradshaw, D., Rosseinsky, M.J., Science 306, 1012 (2004).CrossRefGoogle Scholar
Tedds, S., Walton, A., Broom, D.P., Book, D., Faraday Discuss. 151, 75 (2011).CrossRefGoogle Scholar
Voser, P., Energy Strategy Rev. 1, 3 (2012).CrossRefGoogle Scholar
Lozano-Castelló, D., Alcañiz-Monge, J., de la Casa-Lillo, M.A., Cazorla-Amorós, D., Linares-Solano, A., Fuel 81, 1777 (2002).CrossRefGoogle Scholar
Menon, V.C., Komarneni, S., J. Porous Mater. 5 (1), 43 (1998).CrossRefGoogle Scholar
Düren, T., Sarkisov, L., Yaghi, O.M., Snurr, R.Q., Langmuir 20, 2683 (2004).CrossRefGoogle Scholar
Zhou, W., Chem. Rec. 10, 200 (2010).CrossRefGoogle Scholar
He, Y., Zhou, W., Krishna, R., Chen, B., Chem. Commun. 48, 11813 (2012).CrossRefGoogle Scholar
Yuan, D., Lu, W., Zhao, D., Zhou, H.-C., Adv. Mater. 23, 3723 (2011).CrossRefGoogle Scholar
Farha, O.K., Yazaydin, A.O., Eryazici, I., Malliakas, C.D., Hauser, B.G., Kanatzidis, M.G., Nguyen, S.T., Snurr, R.Q., Hupp, J.T., Nat. Chem. 2, 944 (2010).CrossRefGoogle Scholar
Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M., Science 329, 424 (2010).CrossRefGoogle Scholar
Guo, Z., Wu, H., Srinivas, G., Zhou, Y., Xiang, S., Chen, Z., Yang, Y., Zhou, W., O’Keeffe, M., Chen, B., Angew. Chem. Int. Ed. 50, 3178 (2011).CrossRefGoogle Scholar
Wilmer, C.E., Leaf, M., Lee, C.Y., Farha, O.K., Hauser, B.G., Hupp, J.T., Snurr, R.Q., Nat. Chem. 4, 83 (2012).CrossRefGoogle Scholar
Wu, H., Zhou, W., Yildirim, T., J. Am. Chem. Soc. 131, 4995 (2009).CrossRefGoogle Scholar
Ma, S., Sun, D., Simmons, J.M., Collier, C.D., Yuan, D., Zhou, H.-C., J. Am. Chem. Soc. 130, 1012 (2008).CrossRefGoogle Scholar
Sakurovs, R., Day, S., Weir, S., Duffy, G., Energy Fuels 21, 992 (2007).CrossRefGoogle Scholar
Sakurovs, R., Day, S., Weir, S., Duffy, G., Int. J. Coal Geol. 73, 250 (2008).CrossRefGoogle Scholar
Sakurovs, R., Day, S., Weir, S., Energy Fuels 24, 1781 (2010).CrossRefGoogle Scholar
Modern Shale Gas Development in the United States: A Primer (U.S. Department of Energy, Washington, DC, 2009).Google Scholar
Kargbo, D.M., Wilhelm, R.G., Campbell, D.J., Environ. Sci. Technol. 44, 5679 (2010).CrossRefGoogle Scholar
Kuhn, M., Umbach, F., Strategic Perspectives of Unconventional Gas: A Game Changer with Implications for the EU’s Energy Security (EUCERS, King’s College London, UK, 2011).Google Scholar
Häring, H.-W., Ed., Industrial Gases Processing (Wiley, Weinheim, Germany, 2008).Google Scholar
O’koye, I.P., Benham, M., Thomas, K.M., Langmuir 13, 4054 (1997).CrossRefGoogle Scholar
Reid, C.R., O’koye, I.P., Thomas, K.M., Langmuir 14, 2415 (1998).CrossRefGoogle Scholar
Reid, C.R., Thomas, K.M., Langmuir 15, 3206 (1999).CrossRefGoogle Scholar
Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D., Int. J. Greenhouse Gas Control 2, 9 (2008).CrossRefGoogle Scholar
Plasynski, S.I., Litynski, J.T., McIlvried, H.G., Srivastava, R.D., Crit. Rev. Plant Sci. 28, 123 (2009).CrossRefGoogle Scholar
Ciferno, J., Litynski, J., Plasynski, S., Murphy, J., Vaux, G., Munson, R., Marano, J., DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap (National Energy Technology Laboratory, Pittsburgh, 2010).Google Scholar
Espinal, L., Morreale, B.D., MRS Bull. 37, 431 (2012).CrossRefGoogle Scholar
Choi, S., Drese, J.H., Jones, C.W., ChemSusChem 2, 796 (2009).CrossRefGoogle Scholar
Keskin, S., van Heest, T.M., Sholl, D.S., ChemSusChem 3, 879 (2010).CrossRefGoogle Scholar
D’Alessandro, D.M., Smit, B., Long, J.R., Angew. Chem. Int. Ed. 49, 6058 (2010).CrossRefGoogle Scholar
Li, J.-R., Ma, Y., McCarthy, M.C., Sculley, J., Yu, J., Jeong, H.-K., Balbuena, P.B., Zhou, H.-C., Coord. Chem. Rev. 255 (15–16), 1791 (2011).CrossRefGoogle Scholar
Liu, J., Thallapally, P.K., McGrail, B.P., Brown, D.R., Liu, J., Chem. Soc. Rev. 41, 2308 (2012).CrossRefGoogle Scholar
Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.-M., Bouallou, C., Appl. Therm. Eng. 30 (1), 53 (2010).CrossRefGoogle Scholar
Drage, T.C., Snape, C.E., Stevens, L.A., Wood, J., Wang, J., Cooper, A.I., Dawson, R., Guo, X., Satterley, C., Irons, R., J. Mater. Chem. 22, 2815 (2012).CrossRefGoogle Scholar
Kizzie, A.C., Wong-Foy, A.G., Matzger, A.J., Langmuir 27, 6368 (2011).CrossRefGoogle Scholar
Granite, E.J., Pennline, H.W., Ind. Eng. Chem. Res. 41, 5470 (2002).CrossRefGoogle Scholar
Chen, B., Zhao, X., Putkham, A., Hong, K., Lobkovsky, E.B., Hurtado, E.J., Fletcher, A.J., Thomas, K.M., J. Am. Chem. Soc. 130 (20), 6411 (2008).CrossRefGoogle Scholar
McBain, J.W., Bakr, A.M., J. Am. Chem. Soc. 48 (3), 690 (1926).CrossRefGoogle Scholar
Brunauer, S., The Adsorption of Gases and Vapors. Volume I: Physical Adsorption (Princeton University Press, Princeton, 1943).Google Scholar
Rouquerol, F., Rouquerol, J., Sing, K., Adsorption by Powders and Porous Solids (Academic Press, London, UK, 1999).Google Scholar
Keller, J.U., Staudt, R., Gas Adsorption Equilibria: Experimental Methods and Adsorption Isotherms (Springer, New York, 2005).Google Scholar
Kiefer, S., Robens, E., J. Therm. Anal. Cal. 94, 613 (2008).CrossRefGoogle Scholar
Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer, Dordrecht, Germany, 2004).CrossRefGoogle Scholar
Kärger, J., Ruthven, D.M., Theodorou, D.N., Diffusion in Nanoporous Materials (Wiley, Weinheim, Germany, 2012).CrossRefGoogle Scholar
Reid, C.R., Thomas, K.M., J. Phys. Chem. B 105, 10619 (2001).CrossRefGoogle Scholar
Klafter, J., Shlesinger, M.F., Proc. Natl. Acad. Sci. U.S.A. 83, 848 (1986).CrossRefGoogle Scholar
Zhao, X., Villar-Rodil, S., Fletcher, A.J., Thomas, K.M., J. Phys. Chem. B 110 (20), 9947 (2006).CrossRefGoogle Scholar
Fletcher, A.J., Uygur, Y., Thomas, K.M., J. Phys. Chem. C 111, 8349 (2007).CrossRefGoogle Scholar
Fletcher, A.J., Cussen, E.J., Bradshaw, D., Rosseinsky, M.J., Thomas, K.M., J. Am. Chem. Soc. 126 (31), 9750 (2004).CrossRefGoogle Scholar
Crank, J., The Mathematics of Diffusion, 2nd ed. (Oxford University Press, Oxford, UK, 1975).Google Scholar
Zielinski, J.M., Coe, C.G., Nickel, R.J., Romeo, A.M., Cooper, A.C., Pez, G.P., Adsorption 13, 1 (2007).CrossRefGoogle Scholar
Qajar, A., Peer, M., Rajagopalan, R., Foley, H.C., Int. J. Hydrogen Energy 37, 9123 (2012).CrossRefGoogle Scholar
Nelsen, F.M., Eggertsen, F.T., Anal. Chem. 30 (8), 1387 (1958).CrossRefGoogle Scholar
Fletcher, A.J., Benham, M.J., Thomas, K.M., J. Phys. Chem. B 106, 7474 (2002).CrossRefGoogle Scholar
Talu, O., Chem. Ing. Tech. 83 (1–2), 67 (2011).CrossRefGoogle Scholar
Rynders, R.M., Rao, M.B., Sircar, S., AIChE J. 43 (10), 2456 (1997).CrossRefGoogle Scholar
Wood, G.O., Carbon 40, 685 (2002).CrossRefGoogle Scholar
Lodewyckx, P., Wood, G.O., Ryu, S.K., Carbon 42, 1351 (2004).CrossRefGoogle Scholar
LeVan, M.D., in Adsorption: Science and Technology, Rodrigues, A.E., LeVan, M.D., Tondeur, D., Eds. (Kluwer, Dordrecht, The Netherlands, 1989), p. 149.CrossRefGoogle Scholar
Badalyan, A., Pendleton, P., Wu, H., Rev. Sci. Instrum. 72 (7), 3038 (2001).CrossRefGoogle Scholar
Pendleton, P., Badalyan, A., Adsorption 11, 61 (2005).CrossRefGoogle Scholar
Fuller, E.L., Poulis, J.A., Czanderna, A.W., Robens, E., Thermochim. Acta 29, 315 (1979).CrossRefGoogle Scholar
Sircar, S., Ind. Eng. Chem. Res. 38, 3670 (1999).CrossRefGoogle Scholar
Sircar, S., AIChE J. 47 (5), 1169 (2001).CrossRefGoogle Scholar
Zhou, W., Wu, H., Hartman, M.R., Yildirim, T., J. Phys. Chem. C 111 (44), 16131 (2007).CrossRefGoogle Scholar
van Hemert, P, Bruining, H., Rudolph, E.S.J., Wolf, K.A.A., Maas, J.G., Rev. Sci. Instrum. 80, 035103 (2009).CrossRefGoogle Scholar
Gensterblum, Y., van Hemert, P., Billemont, P., Busch, A., Charriére, D., Li, D., Krooss, B.M., de Weireld, G., Prinz, D., Wolf, K.-H.A.A., Carbon 47 (13), 2958 (2009).CrossRefGoogle Scholar
Furukawa, H., Miller, M.A., Yaghi, O.M., J. Mater. Chem. 17, 3197 (2007).CrossRefGoogle Scholar
Murray, L.J., Dincă, M., Long, J.R., Chem. Soc. Rev. 38, 1294 (2009).CrossRefGoogle Scholar
Hall, P.J., Brown, S., Fernandez, J., Calo, J.M., Carbon 38, 1257 (2000).CrossRefGoogle Scholar
Scaife, S., Kluson, P., Quirke, N., J. Phys. Chem. B 104, 313 (2000).CrossRefGoogle Scholar
Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A., Chem. Eng. Technol. 26 (8), 852 (2003).CrossRefGoogle Scholar
Murata, K., El-Merraoui, M., Kaneko, K., J. Chem. Phys. 114 (9), 4196 (2001).CrossRefGoogle Scholar
Talu, O., Myers, A.L., AIChE J. 47 (5), 1160 (2001).CrossRefGoogle Scholar
Düren, T., Bae, Y.-S., Snurr, R.Q., Chem. Soc. Rev. 38, 1237 (2009).CrossRefGoogle Scholar
Keskin, S., Liu, J., Rankin, R.B., Johnson, J.K., Sholl, D.S., Ind. Eng. Chem. Res. 48, 2355 (2009).CrossRefGoogle Scholar
Xiang, Z., Cao, D., Lan, J., Wang, W., Broom, D.P., Energy Environ. Sci. 3, 1469 (2010).CrossRefGoogle Scholar
Bell, J.G., Angus, K., Todd, C., Thomas, K.M., Ind. Eng. Chem. Res. 52 (3), 1335 (2013).CrossRefGoogle Scholar
Stylianou, K.C., Rabone, J., Chong, S.Y., Heck, R., Armstrong, J., Wiper, P.V., Jelfs, K.E., Zlatogorsky, S., Bacsa, J., McLennan, A.G., Ireland, C.P., Khimyak, Y.Z., Thomas, K.M., Bradshaw, D., Rosseinsky, M.J., J. Am. Chem. Soc. 134, 20466 (2012).CrossRefGoogle Scholar
Cychosz, K.A., Ahmad, R., Matzger, A.J., Chem. Sci. 1, 293 (2010).CrossRefGoogle Scholar
Procopio, E.Q., Linares, F., Montoro, C., Colombo, V., Maspero, A., Barea, E., Navarro, J.A.R., Angew. Chem. Int. Ed. 49, 7308 (2010).CrossRefGoogle Scholar
Cai, J., Xing, Y., Zhao, X., RSC Adv. 2, 8579 (2012).CrossRefGoogle Scholar
Xiang, S.-C., Zhang, Z., Zhao, C.-G., Hong, K., Zhao, X., Ding, D.-R., Xie, M.-H., Wu, C.-D., Das, M.C., Gill, R., Thomas, K.M., Chen, B., Nat. Commun. 2, 204 (2011).CrossRefGoogle Scholar
Bloch, E.D., Queen, W.L., Krishna, R., Zadrozny, J.M., Brown, C.M., Long, J.R., Science 335, 1606 (2012).CrossRefGoogle Scholar