Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-08T10:57:21.264Z Has data issue: false hasContentIssue false

Advances in materials that enable quantitative point-of-care assays

Published online by Cambridge University Press:  12 April 2013

Scott T. Phillips
Affiliation:
Department of Chemistry, The Pennsylvania State University; sphillips@psu.edu
Gregory G. Lewis
Affiliation:
Department of Chemistry, The Pennsylvania State University; gul124@psu.edu
Get access

Abstract

The traditional paradigm for obtaining a quantitative measurement in point-of-care (POC) assays may not be adequate for extremely resource-limited environments, such as remote villages in the developing world. In standard quantitative POC assays, sample volume and assay time must be controlled. Furthermore, thermally stable assay reagents, a power supply, and an electronic reader must be available. Arranging all of these variables in a single assay results in systems that are too complicated, expensive, and user-intensive for extremely resource-limited environments. This overview describes new approaches in various areas of materials science that are beginning to redefine how quantitative POC assays are achieved, with a focus on approaches that use paper as the platform for the assays. Such approaches should have an immediate impact in the developing world, but also may transform quantitative POC assays in a variety of other settings, where quantitative information about the health of people, plants, animals, and the environment would help individuals better assess and manage their lives.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gubala, V., Harris, L.F., Ricco, A.J., Tan, M.X., Williams, D.E., Anal. Chem. 84, 487 (2012).CrossRefGoogle Scholar
Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R., Weigl, B.H., Nature 442, 412 (2006).CrossRefGoogle Scholar
Urdea, M., Penny, L.A., Olmsted, S.S., Giovanni, M.Y., Kaspar, P., Shepherd, A., Wilson, P., Dahl, C.A., Buchsbaum, S., Moeller, G., Burgess, D.C.H., Nature 444 (Suppl. 1), 73 (2006).CrossRefGoogle Scholar
Peeling, R.W., Holmes, K.K., Mabey, D., Ronald, A., Sex Transm. Infect. 82, 1 (2006).CrossRefGoogle Scholar
Chin, C.D., Linder, V., Sia, S.K., Lab Chip 7, 41 (2007).CrossRefGoogle Scholar
Yager, P., Domingo, G.J., Gerdes, J., Annu. Rev. Biomed. Eng. 10, 107 (2008).CrossRefGoogle Scholar
Weigl, B., Domingo, G., LaBarre, P., Gerlach, J., Lab Chip 8, 1999 (2008).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Whitesides, G.M., Anal. Chem. 82, 3 (2010).CrossRefGoogle Scholar
Li, X., Ballerini, D.R., Shen, W., Biomicrofluidics 6, 011301 (2012).CrossRefGoogle Scholar
Zhao, W., van den Berg, A., Lab Chip 8, 1988 (2008).Google Scholar
Martinez, A.W., Phillips, S.T., Butte, M.J., Whitesides, G.M., Angew. Chem. Int. Ed. 46, 1318 (2007).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Whitesides, G.M., Proc. Natl. Acad. Sci. U.S.A. 105, 19606 (2008).CrossRefGoogle Scholar
Lewis, G.G., DiTucci, M.J., Baker, M.S., Phillips, S.T., Lab Chip 12, 2630 (2012).CrossRefGoogle Scholar
Liu, H., Crooks, R.M., Anal. Chem. 84, 2528 (2012).CrossRefGoogle Scholar
Lu, Y., Shi, W., Jiang, L., Qin, J., Lin, B., Electrophoresis 30, 1497 (2009).CrossRefGoogle ScholarPubMed
Carrilho, E., Martinez, A.W., Whitesides, G.M., Anal. Chem. 81, 7091 (2009).CrossRefGoogle Scholar
Noh, H., Phillips, S.T., Anal. Chem. 82, 4181 (2010).CrossRefGoogle Scholar
Noh, H., Phillips, S.T., Anal. Chem. 82, 8071 (2010).CrossRefGoogle Scholar
Thom, N.K., Yeung, K., Pillion, M.B., Phillips, S.T., Lab Chip 12, 1768 (2012).CrossRefGoogle Scholar
Liu, H., Crooks, R.M., Anal. Chem. 84, 2528 (2012).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Carrilho, E., Thomas, S.W. III, Sindi, H., Whitesides, G.M., Anal. Chem. 80, 3699 (2008).CrossRefGoogle Scholar
Lewis, G.G., DiTucci, M.J., Phillips, S.T., Angew. Chem. Int. Ed. 51, 12707 (2012).CrossRefGoogle Scholar
Stevens, D.Y., Petri, C.R., Osborn, J.L., Spicar-Mihalic, P., McKenzie, K.G., Yager, P., Lab Chip 8, 2038 (2008).CrossRefGoogle Scholar
Cho, D.-G., Sessler, J.L., Chem. Soc. Rev. 38, 1647 (2009).CrossRefGoogle Scholar
Mohapatra, H., Phillips, S.T., Angew. Chem. Int. Ed. 51, 11145 (2012).CrossRefGoogle Scholar
Baker, M.S., Phillips, S.T., J. Am. Chem. Soc. 133, 5170 (2011).CrossRefGoogle Scholar
Mohapatra, H., Schmid, K.M., Phillips, S.T., Chem. Commun. 48, 3018 (2012).CrossRefGoogle Scholar
Yeung, K., Schmid, K.M., Phillips, S.T., Chem. Commun. 49, 394 (2013).CrossRefGoogle Scholar
Scrimin, P., Prins, L.J., Chem. Soc. Rev. 40, 4488 (2011).CrossRefGoogle Scholar