Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-25T23:22:04.876Z Has data issue: false hasContentIssue false

The high-temperature transformation of andalusite (Al2SiO5) into 3/2-mullite (3Al2O32SiO2) and vitreous silica (SiO2)

Published online by Cambridge University Press:  05 July 2018

Wolfgang Pannhorst
Affiliation:
Kristallographisches Institut der Universität
Hartmut Schneider
Affiliation:
Kristallographisches Institut der Universität

Summary

The high-temperature transformation of andalusite (Al2SiO5) into 3/2-mullite (3A2O32SiO2) plus vitreous silica (SiO2) has been studied within the temperature interval from 1300 to 1600 °C by means of X-ray powder and single-crystal techniques and by infrared spectroscopy. Results are interpreted in terms of a topotactic transformation in which (011) and (01) planes of andalusite transform into (20) and (201) planes of 3/2-mullite; in this way the a- and b-axes of the two phases are interchanged. From the structural and orientational relationship between the andalusite and 3/2-mullite latrices it is concluded that the aluminium-oxygen octahedral chains, running in both structures parallel to the crystallographic c-axis, are preserved during phase transformation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Forschungsinstitut der Feuerfest-industrie, An der Elisabethkirche 27, 5300 Bonn, Germany.

References

Buerger, (M. J.), 1945. Am. Mineral. 30, 469-82.Google Scholar
Burnham, (C. W.), 1963. Z. Kristallogr. 118, 127-48.CrossRefGoogle Scholar
Burnham, (C. W.) and Buerger, (M. J.), 1961. Z. Kristallogr. 115, 269-90.CrossRefGoogle Scholar
Glasser, (L. S. D.), Glasser, (F. P.), and Taylor, (H. F. W.), 1962. Quart. Rev. 16, 343-60.CrossRefGoogle Scholar
Harders, (F.) and Kienow, (S.), 1960. Feuerfestkunde. Springer, Berlin.CrossRefGoogle Scholar
Konopicky, (K.) and Patzak, (I.), 1974. Ber. deut. Keram. Ges. 51, 285-90.Google Scholar
MacKenzie, (K. J. D.), 1972. J. Am. Ceram. Soc. 55, 6871.CrossRefGoogle Scholar
Sadanaga, (R.), Tokonami, (M.), and Takeuchi, (Y.), 1962. Acta Crystallogr. 15, 65-8.CrossRefGoogle Scholar
Schneider, (H.) and Pannhorst, (W.), 1976. Naturwiss. 63, 37.CrossRefGoogle Scholar
Taylor, (W. H.), 1928. Z. Kristallogr. 68, 503-21.Google Scholar
Taylor, (W. H.), 1929. Ibid. 71, 205-18.CrossRefGoogle Scholar
Walker, (U.), 1976. Dissertation, Universität Freiburg.Google Scholar