Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 0.245 Render date: 2021-12-01T19:12:10.107Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

On irredundant components of the kernel of an ideal

Published online by Cambridge University Press:  26 February 2010

J. L. Mott
Affiliation:
University of Kansas, Lawrence, Kansas, U.S.A.

Extract

Throughout this paper a ring will mean a commutative ring with identity element. If A is an ideal of the ring R and P is a minimal prime ideal of A, then the intersection Q of all P-primary ideals which contain A is called the isolated primary component of A belonging to P. The ideal Q can also be described as the set of all elements xR such that xrA for some rR\P. If {Pα} is the collection of all minimal prime ideals of A and Qα is the isolated primary component of A belonging to Pα, then is called the kernel of A.

Type
Research Article
Copyright
Copyright © University College London 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. JrGilmer, Robert W. and Mott, Leonard Joe, “Multiplication rings as rings in which ideals with prime radical are primary”, Trans. American Math. Soc., 114 (1965), 4052.CrossRefGoogle Scholar
2. Krull, W., Idealtheorie (New York: Chelsea Publishing Co., 1948).CrossRefGoogle Scholar
3. Krull, W., “Idealtheorie in Ringen ohne Endlichkeitsbedingung”, Math. Ann., 29 (1928), 729744.Google Scholar
4. Krull, W., “Über einen Haupsatz der allgemeinen Idealtheorie”, S. B. Heidelberg. Akad. Wiss., Abhandl., 2 (1924), 1116.Google Scholar
5. Krull, W., “Über Laskersche Ringe”, Rend. Circ. Mat. Palermo, Ser. 2, 7 (1958), 155165.CrossRefGoogle Scholar
6. Mori, S., “Über allgemeine Multiplikationsringe II”, J. Sci. Hiroshima Univ., Ser. A, 4 (1934), 99109.Google Scholar
7. Nakano, N., “Idealtheorie in einem speziellen unendlichen algebraischen Zahlkörper”, J. Sci. Hiroshima Univ., Ser. A, 16 (1952), 425439.Google Scholar
8. Nakano, N., “Über idempotente Ideale in unendlichen algebraisohen Zahlkörpern”, J. Sci. Hiroshima Univ., Ser. A, 17 (1953), 1120.Google Scholar
9. Nakano, N.Über die kürzeste Darstellung der Ideale im unendlichen algobraischen Zahlkörper”, J. Sci. Hiroshima Univ., Ser. A, 17 (1953), 2125.Google Scholar
10. Nakano, N., Über die Produkte und Quotienten von Idealen in unendlichen algebraischen Zahlkörperm”, J. Sci. Hiroshima Univ., Ser. A, 19 (1956), 239253.Google Scholar
11. Stone, M. H., “The theory of representations for Boolean algebras”, Trans. American Math. Soc., 40 (1936), 37-111.Google Scholar
12. Zariski, O. and Samuel, P., Commutative algebra, vol. I (Van Nostrand Company, 1958).Google Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On irredundant components of the kernel of an ideal
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On irredundant components of the kernel of an ideal
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On irredundant components of the kernel of an ideal
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *