Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-05T03:58:05.510Z Has data issue: false hasContentIssue false

Comparative Analysis of the Río Balsas and Tehuacán Models for the Origin of Maize

Published online by Cambridge University Press:  20 January 2017

Richard S. MacNeish
Affiliation:
Andover Foundation for Archaeological Research, PO Box 83, Andover, MA 01810-0002
Mary W. Eubanks
Affiliation:
Department of Botany, Duke University, Durham, NC 27708-0338

Abstract

This paper examines the archaeological and biological evidence for shifts in human subsistence strategies during the transition from hunting and foraging to maize agriculture as posited in the Río Balsas, or lowland origin of maize, model and the Tehuacán, or highland origin of maize, model. These are two different interpretations of the genetic evidence for the ancestry of maize, the archaeological evidence for plant exploitation, and the ecological evidence for paleoenvironments and climate change in the two regions. In contrast to Panama, where there is good evidence for progressive intensification of human forest disturbance by 10,000 B.P., horticultural forest clearing by 8000 B.P., and slash-and-burn agriculture by 6000 B.P., the evidence for Mesoamerica, where maize agriculture originated, fits a different picture of biocultural evolution. The lowland regions of Mexico, Guatemala, Belize, and probably Honduras, were apparently undisturbed, semi-evergreen forests around 10,000 B.P. New findings from experimental maize genetics, combined with the comprehensive archaeological picture from Tehucán, Oaxaca, Tamaulipas, and the Valley of Mexico, support a highland Mesoamerican origin of maize.

Resumen

Resumen

Este artículo examina la evidencia arqueológica y biológica sobre los cambios ocurridos durante la transición de la estrategia de subsistencia de la caza y recolección a la agricultura del maíz en el Río Balsas o modelo del orígen del maíz en las tierras bajas, y el modelo de Tehuacán del orígen del maíz en las tierras altas. Estos modelos constituyen dos interpretaciones diferentes de la evidencia genética acerca del ancestro del maíz, la evidencia arqueológica de la explotación de la planta y la evidencia ecológica acerca del paleo-ambiente y cambio climático en estas dos regiones. En contraste con Panamá, donde hay buenas evidencias sobre la intensificación progresiva de perturbaciones humanas sobre la selva alrededor de 10.000 A.P., la tala de la selva para la horticultura alrededor de 8000 A.P., y la agricultura de tala y quema alrededor de 6000 A.P., la evidencia para Mesoamérica, el lugar del orígen del maíz se adecua a un esquema de evolución biocultural diferente. Las tierras bajas de México, Guatemala, Belize y probablemente Honduras aparentemente eran selvas semideciduas no perturbadas alrededor de 10.000 A. P. Los resultados de un estudio experimental del cultivo del maíz han proporcionado ahora nueva evidencia sobre el orígen híbrido del maíz derivados de un cruce de teosinte (Zea diploperennis), una especie de diploide de las tierras altas mexicanas, y la hierba gama de oriente (Tripsacum dactyloides), segregando así la progenie híbrida que es muy parecida a los restos arqueológicos más antiguas del maíz que se han recuperado de las cuevas secas de Tehuacán. La evidencia comprehensiva que combina los nuevos hallazgos de genética experimental del maíz con un esquema completo de la arqueologia de Tehuacán, Oaxaca, Tamaulipas, y en el Valle de México, apoya la teoría del origen del maíz en las tierras altas de Mesoamérica.

Type
Articles
Copyright
Copyright © Society for American Archaeology 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Beadle, G. W. 1939 Teosinte and the Origin of Maize. Journal of Heredity 30:245247.CrossRefGoogle Scholar
Benz, B. 1994 Reconstructing the Racial Phylogeny of Mexican Maize: Where Do We Stand? In Corn and Culture in the Prehistoric New World, edited by S. Johannessen and C. A. Hastorf, pp. 2333. University of Minnesota Publications in Anthropology 5. Westview Press, Boulder.Google Scholar
Benz, B. 1999 On the Origin, Evolution, and Dispersal of Maize. In Pacific Latin America in Prehistory: The Evolution of Archaic and Formative Cultures, edited by M. Blake, pp. 2538. Washington State University Press, Pullman, Washington.Google Scholar
Blake, M., Chisholm, B., Clark, J., Voorhies, B., and Love, M. 1992 Prehistoric Subsistence in the Soconusco Region. Current Anthropology 33:8394.Google Scholar
Brush, C. F. 1965 Pox Pottery: Earliest Identifiable Mexican Ceramics. Science 149:194195.Google Scholar
Buckler, E. S. IV, and Holtsford, T. P. 1996 Zea Systematics: Ribosomal ITS Evidence. Molecular Biology and Evolution 13:612622.Google Scholar
Bullen, R. P., and Plowden, W. W. 1963 Preceramic Archaic Sites in the Highland of Honduras. American Antiquity 28:382385.Google Scholar
Chandravadana, P., Galinat, W. C., and Rao, B. G. S. 1971 A Cytological Study of Tripsacum dactyloides . Journal of Heredity 62:280284.CrossRefGoogle Scholar
Chomet, P. S. 1994 Transposon Tagging with Mutator. In The Maize Handbook, edited by M. Freeling and V. Walbot, pp. 243249. Springer-Verlag, New York.CrossRefGoogle Scholar
Cutler, H. C, and Whitaker, T. W. 1967 Cucurbits from Tehuacán Caves. In The Prehistory of the Tehuacán Valley. Volume I: Environment and Subsistence, edited by D.S. Byers, pp. 212219. University of Texas Press, Austin.Google Scholar
Dewald, C. L., Burson, B. L., De Wet, I. M. J., and Harlan, J. R. 1987 Morphology, Inheritance, and Evolutionary Significance of Sex Reversal in Tripsacum dactyloides (Poaceae). American Journal of Botany 74:10551059.Google Scholar
Doebley, J. 1990 Molecular Evidence and the Evolution of Maize. Economic Botany 44 (suppl.):627.CrossRefGoogle Scholar
Doebley, J. F, Goodman, M. M., and Stuber, C. W. 1984 Isoenzymatic Variation in Zea (Gramineae). Systematic Botany 9:203218.Google Scholar
Doebley, J. F, Goodman, M. M., and Stuber, C. W. 1985 Isozyme Variation in the Races of Maize from Mexico. American Journal of Botany 72:629639.Google Scholar
Doebley, J. F, Goodman, M. M., and Stuber, C. W. 1987 Patterns of Isozyme Variation between Maize and Mexican Annual Teosinte. Economic Botany 41:234246.Google Scholar
Doebley, J. R, Renfroe, W., and Blanton, A. 1987 Restriction Site Variation in the Zea chloroplast Genome. Genetics 117:139147.Google Scholar
Doebley, J. F., Stec, A., Wendel, J., and Edwards, M. 1990 Genetic and Morphological Analysis of a Maize-teosinte Fl Population: Implications for the Origin of Maize. Proceedings of the National Academy of Sciences 87:98889892.CrossRefGoogle Scholar
Dowling, T. E., Moritz, C., Palmer, J. D., and Rieseberg, L. H. 1996 Nucleic Acids III: Analysis of Fragments and Restriction Sites. In Molecular Systematics, 2nd ed., edited by D.M. Hillis, C. Moritz, and B.K. Mable, pp. 249320. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Dunn, M. E. 1983 Phytolith Analysis in Archaeology. Midcontinental Journal of Archaeology 8:287297.Google Scholar
Eubanks, M. W. 1987 A Cytological Study of the Inheritance of Chromosome Knobs in Maize and Its Close Relatives. Unpublished Master’s thesis, Department of Biology, Vanderbilt University, Nashville.Google Scholar
Eubanks, M. W. 1995 A Cross between Two Maize Relatives: Tripsacum dactyloides and Zea diploperennis (Poaceae). Economic Botany 49:172182.Google Scholar
Eubanks, M. W. 1997a Molecular Analysis of Crosses between Tripsacum dactyloides and Zea diploperennis (Poaceae). Theoretical and Applied Genetics 94:707712.Google Scholar
Eubanks, M. W. 1997b Reevaluation of the Identification of Ancient Maize Pollen from Alabama. American Antiquity 62:139145.Google Scholar
Eubanks, M. W. 1999a Corn in Clay: Maize Paleoethnobotany in Pre-Columbian Art. University of Florida Press, Gainesville.Google Scholar
Eubanks, M. W. 1999b Comparative Analysis of the Genomes of Zea and Tripsacum . Maize Genetics Newsletter 73:3032.Google Scholar
Farnsworth, P., Brady, J. E., DeNiro, M. J., and MacNeish, R. S. 1985 A Re-evaluation of the Isotopic and Archaeological Reconstructions of Diet in the Tehuacán Valley. American Antiquity 50:102116.CrossRefGoogle Scholar
Flannery, K. V. 1986. Guilá Naquitz: Archaic Foraging and Early Agriculture in Oaxaca, Mexico. Academic Press, New York.Google Scholar
Flannery, K. V, and MacNeish, R. S. 1997 In Defense of the Tehuacán Project. Current Anthropology 38:660672.Google Scholar
Fritz, G. 1994 Are the First American Farmers Getting Younger? Current Anthropology 35:305309.CrossRefGoogle Scholar
Galinat, W. C. 1977 The Origin of Corn. In Corn and Corn Improvement, edited by G.F. Sprague, pp. 147. American Society of Agronomy, Madison, Wisconsin.Google Scholar
Galinat, W. C. 1985 Domestication and Diffusion of Maize. In Prehistoric Food Production in North America, edited by R.I. Ford, pp. 245-278. Anthropological Papers No. 75. Museum of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Galinat, W. C. 1999 The Origin of Maize from Teosinte by Applied Genetics. In Encyclopedia of Genetics, edited by E. C. R. Reave. Fitzroy Dearborn Publishers, London. In press.Google Scholar
Galinat, W. C., and Gunnerson, J. H. 1963 Spread of Eight-rowed Maize from the Prehistoric Southwest. Harvard University Botanical Museum Leaflets 20:117160.Google Scholar
García-Bárcena, J. 1976 Excavaciones en el Abrigo de Santa Maria, Chiapas. Informes del Departamento de Prehistoria, Instituto Nacional de Antropología e Historia, México, D.F.Google Scholar
Gepts, P., Osborn, T. C., Raska, K., and Bliss, F. A. 1986 Phaseolin Seed Protein Variability in Wild Forms and Landraces of the Common Bean, Phaseolus vulgaris: Evidence for Multiple Centers of Domestication. Economic Botany 40:451468.Google Scholar
Goloubinoff, P., Pääbo, S., and Wilson, A. C. 1993 Evolution of Maize Inferred from Sequence Diversity of an Adh2 Gene Segment from Archaeological Specimens. Proceedings of the National Academy of Sciences 90:19972001.Google Scholar
Goodman, M. M., and Stuber, C. W. 1983 Races of Maize. VI. Isozyme Variation Among Races of Maize in Bolivia. Maydica 28:169187.Google Scholar
Iltis, H.H. 1983 From Teosinte to Maize: The Catastrophic Sexual Transmutation. Science 222: 886893.Google Scholar
Iltis, H. H., Doebley, J. F., Guzman M, R., and Pazy, B. 1979 Zea diploperennis (Gramineae): A New Teosinte from Mexico. Science 203:186188.Google Scholar
Islebe, G. A., Hoohiemstra, H., Brenner, M., Curtis, J. H., and Hodell, D. A.. 1996 A Holocene Vegetation History from Lowland Guatemala. Holocene 6:265271.Google Scholar
Jones, J. 1991 Pollen Evidence of Prehistoric Forest Modification and Maya Cultivation in Belize. Unpublished Ph.D. dissertation, Department of Anthropology, Texas A&M University, College Station.Google Scholar
Jones, J. 1994 Pollen Evidence for Early Settlement and Agriculture in Northern Belize. Palynology 18:205211.Google Scholar
Langham, D. G. 1940 The Inheritance of Intergeneric Differences in Zea-Euchlaena Hybrids. Genetics 25:88107.Google Scholar
Lewin, B. 1997 Genes VI. Oxford University Press, Oxford.Google Scholar
Li, D., Blakey, C. A., Dewald, C., and Dellaporta, S. L. 1997 Evidence for a Common Sex Determination Mechanism for Pistil Abortion in Maize and in Its Wild Relative Tripsacum . Proceedings of the National Academy of Sciences 94:42174222.CrossRefGoogle ScholarPubMed
Lippi, R. D., McK. Bird, R., and Stemper, D. M. 1984 Maize Recovered at La Ponga, an Early Ecuadorian Site. American Antiquity 49:118124.Google Scholar
Long, A., Benz, B. F., Donahue, D. J., Jull, A. J. T., and Toolin, L. J. 1989 First Direct AMS Dates on Early Maize from Tehuacán Mexico. Radiocarbon 31:10351040.CrossRefGoogle Scholar
Longley, A. E. 1941 Knob Positions on Teosinte Chromosomes. Journal of Agricultural Research 62:401413.Google Scholar
McClintock, B. 1929 Chromosome Morphology in Zea mays . Science 69:629.Google Scholar
McDade, L. A. 1992 Hybrids and Phylogenetic Systematics II: The Impact of Hybrids on Cladistic Analysis. Evolution 46:132946.CrossRefGoogle ScholarPubMed
MacNeish, R. S. 1958 Preliminary Archaeological Investigations in the Sierra de Tamaulipas, Mexico. Transactions of the American Philosophical Society, Pt. 6, Vol. 48. Philadelphia.Google Scholar
MacNeish, R. S. 1967 A Summary of the Subsistence. In The Prehistory of the Tehuacán Valley. I: Environment and Subsistence, edited by D. S. Byers, pp. 290309. University of Texas Press, Austin.Google Scholar
MacNeish, R. S. 1983 Final Annual Report of the Belize Archaic Archaeological Reconnaissance. Robert S. Peabody Foundation for Archaeology, Andover, Massachusetts.Google Scholar
MacNeish, R. S. 1992 The Origins of Agriculture and Settled Life. University of Oklahoma Press, Norman.Google Scholar
MacNeish, R. S., and Peterson, F. A. 1962 The Santa Marta Rockshelter, Ocozocoautla, Chiapas. Papers 14: 1–46. New World Archaeological Foundation, Brigham Young University, Provo, Utah.Google Scholar
Mangelsdorf, P. C. 1947 The Origin and Evolution of Maize. Advances in Genetics 1:161207.Google Scholar
Mangelsdorf, P. C. 1974 Corn: Its Origin, Evolution and Improvement. Belknap Press, Harvard University, Cambridge.CrossRefGoogle Scholar
Mangelsdorf, P. C. 1983 The Mystery of Corn: New Perspectives. Proceedings of the American Philosophical Society 127:215247.Google Scholar
Mangelsdorf, P. C. 1986 The Origin of Corn. Scientific American 255:8086.Google Scholar
Mangelsdorf, P. C, MacNeish, R. S., and Galinat, W. C. 1967a Prehistoric Wild and Cultivated Maize. In The Prehistory of the Tehuacán Valley. Volume I: Environment and Subsistence, edited by D. S. Byers, pp. 178200. University of Texas Press, Austin.Google Scholar
Mangelsdorf, P. C, MacNeish, R. S., and Galinat, W. C. 1967b Prehistoric Maize, Teosinte and Tripsacum from Ocampo, Tamaulipas, Mexico. Harvard University Botanical Museum Leaflets 22:3336.Google Scholar
Mangelsdorf, P. C, and Reeves, R. G. 1939 The Origin of Indian Corn and Its Relatives. Texas Agricultural Experiment Station Bulletin 574: 1315.Google Scholar
Mangelsdorf, P. C., Roberts, L. M., and Rogers, J. S.. 1981 The Probable Origin of Annual Teosintes. Bussey Institution, Harvard University, Cambridge.Google Scholar
Mastenbroek, I., Cohen, C. E., and de Wet, J. M. J. 1981 Seed Protein and Seedling Isozyme Patterns of Zea mays and Its Closest Relatives. Biochemical Systematics and Ecology 9:179183.Google Scholar
Mountjoy, J. B. 1998 The Evolution of Complex Societies in West Mexico: A Comparative Perspective. In Ancient West Mexico: Art and Archaeology of the Unknown Past, edited by R. F. Townsend, pp. 251265. Thames and Hudson, New York.Google Scholar
Murphy, R. W., Sites, J. W. Jr., Buth, D. G., and Haufler, C. H. 1996 Proteins: Isozyme Electrophoresis. In Molecular Systematics, 2nd ed., edited by D. M. Hillis, C. Moritz and B. K. Mable, pp. 51120. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Niederberger, C. 1979 Early Sedentary Economy in the Basin of Mexico. Science 203:131142.Google Scholar
Pasupuleti, C. V., and Galinat, W. C. 1982 Zea diploperennis I. Its Chromosomes and Comparative Cytology. Journal of Heredity 73:168170.CrossRefGoogle Scholar
Pearsall, D. M. 1989 The Origins of Plant Cultivation in South America. In The Origins of Plant Domestication: An International Perspective, edited by C. W. Cowan and P. J. Watson, pp. 173205. Smithsonian Institution Press, Washington, D.C.Google Scholar
Piperno, D. R. 1985 Phytolith Analysis of Geological Sediments from Panama. Antiquity 59:1319.Google Scholar
Piperno, D. R. 1989 Non-affluent Foragers: Resource Availability, Seasonal Shortages, and the Emergence of Agriculture in Panamanian Tropical Forests. In Foraging and Farming: The Evolution of Plant Exploitation, edited by D. R. Harris and G. C. Hillman, pp. 538554. Unwin and Hyman, London.Google Scholar
Piperno, D. R., Bush, M. B., and Colinvaux, P. A. 1991 Paleoecological Perspectives on Human Adaptation in Central Panama. II. The Holocene. Geoarchaeology 6:227250.Google Scholar
Piperno, D. R., and Pearsall, D. M. 1993 Phytoliths in the Reproductive Structures of Maize and Teosinte: Implications for the Study of Maize Evolution. Journal of Archaeological Science 20:337362.Google Scholar
Piperno, D. R., and Pearsall, D. M. 1998 The Origin of Agriculture in the Lowland Neotropics. Academic Press, New York.Google Scholar
Pohl, M. D., Bloom, P., and Pope, K. 1990 Interpretation of Wetland Farming in Northern Belize: Excavations at San Antonio Río Hondo. In Ancient Maya Wetland Agriculture: Excavations on Albion Island, Northern Belize, edited by M.D. Pohl, pp. 187278. Westview Press, Boulder.Google Scholar
Pohl, M.D., Pope, K. O., Jones, J. G., Jacob, J. S., Piperno, D. R., deFrance, S. D., Lentz, D. L., Gifford, J. A., Danforth, M. E., and Josserand, J. K. 1996 Early Agriculture in the Maya Lowlands. Latin American Antiquity 7:355372.Google Scholar
Ranere, A. J. 1980 Preceramic Shelters in the Talamancan Range. In Adaptive Radiations in Prehistoric Panama, edited by D. Linares and A. J. Ranere, pp. 1643. Monographs 5. Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge.Google Scholar
Rhoades, M. M. 1950 Meiosis in Maize. Journal of Heredity 41:5867.Google Scholar
Rieseberg, L. H., Beckstrom-Sternberg, S., Liston, A., and Arias, D. 1991 Phylogenetic and Systematic Inferences from Chloroplast DNA and Isozyme Variation in Helianthus sect. Helianthus. Systematic Botany 16:5076.Google Scholar
Rieseberg, L. H., and Soltis, D. E. 1991 Phylogenetic Consequences of Cytoplasmic Gene Flow in Plants. Evolutionary Trends in Plants 5:6584.Google Scholar
Rogers, J. S. 1950 The Inheritance of Inflorescence Characters in Maize-Teosinte Hybrids. Genetics 35:541558.Google Scholar
Roosevelt, A. C. 1984 Problems Interpreting the Diffusion of Cultivated Plants. In Pre-Columbian Plant Migration, edited by D. Stone, pp. 115. Papers of the Peabody Museum of Archaeology and Ethnology Vol. 76. Harvard University, Cambridge.Google Scholar
Rovner, I. 1999 Phytolith Analysis. Science 283:488489.Google Scholar
Rust, W. R, and Leyden, B. W. 1994 Evidence of Maize Use at Early and Middle Preclassic La Venta Olmec sites. In Corn and Culture in the Prehistoric New World, edited by S. Johannessen and C. A. Hastorf, pp. 181201. University of Minnesota Publications in Anthropology 5. Westview Press, Boulder.Google Scholar
Sauer, C. 1952 Agricultural Origins and Dispersals. Bowman Memorial Lecture 5, Series 2. American Geographical Society, New York.Google Scholar
Schoenwetter, J. 1974 Pollen Records of Guild Naquitz Cave. American Antiquity 39:292303.CrossRefGoogle Scholar
Schoenwetter, J., and Smith, L. D. 1986 Pollen Analysis of the Oaxaca Archaic. In Guilá Naquitz: Archaic Foraging and Early Agriculture in Oaxaca, Mexico, edited by K. V. Flannery, pp. 179231. Academic Press, New York.Google Scholar
Smith, B. D. 1995 The Emergence of Agriculture. Scientific American Library, New York. 1997a The Initial Domestication of Cucurbita pepo in the Americas 10,000 Years Ago. Science 276:932934.Google Scholar
Smith, B. D. 1997b Reconsidering the Ocampo Caves and the Era of Incipient Cultivation in Mesoamerica. Latin American Antiquity 8:342383.Google Scholar
Smith, C. E. 1967 Plant Remains. In The Prehistory of the Tehuacán Valley: I. Environment and Subsistence, edited by D. S. Byers, pp. 220255. University of Texas Press, Austin.Google Scholar
Smith, J. S., Goodman, M. M., and Stuber, C. W. 1984 Variation within Teosinte: II. Numerical Analysis of Allozyme Data. Economic Botany 38:97113.Google Scholar
Smith, J. S., Goodman, M. M., and Stuber, C. W. 1985 Relationships between Maize and Teosinte of Mexico and Guatemala: Numerical Analysis of Allozyme Data. Economic Botany 39:1224.Google Scholar
Soltis, D. E., Soltis, P. S., Collier, T. G., and Edgerton, M. L. 1991 Chloroplast Variation within and among Genera of the Heuchera Group (Saxifragaceae): Evidence for Chloroplast Transfer and Paraphyly. American Journal of Botany 78:11501161.Google Scholar
Stadler, L. J. 1951 Spontaneous Mutation in Maize. Cold Spring Harbor Symposium Quantitative Biology 16:4963.CrossRefGoogle ScholarPubMed
Stuber, C. W., and Goodman, M. M. 1983 Allozyme Genotypes for Popular and Historically Important Inbred Lines of Corn, Zea mays L. Southern Series 16. Agricultural Research Service, Southern Region, U.S. Dept. of Agriculture, New Orleans.Google Scholar
Talbert, L. E., Doebley, J. F., Larson, S., and Chandler, V. L. 1990 Tripsacum andersonii is a Natural Hybrid Involving Zea and Tripsacum: Molecular Evidence. American Journal of Botany 77:722726.Google Scholar
Tantravahi, R. V. 1968 Cytology and Crossability Relationships of Tripsacum. Bussey Institution, Harvard University, Cambridge.Google Scholar
Upham, S., MacNeish, R. S., Galinat, W. C., and Stevenson, C. M. 1987 Evidence Concerning the Origin of Maíz de Ocho. American Anthropologist 89:410419.CrossRefGoogle Scholar
Vavilov, N. I. 1952 The Origin, Variation, Immunity, and Breeding of Cultivated Plants. K. S. Chester, translator. Chronica Botanica 13(1–6).Google Scholar
Vázquez, G., J. A., Cuevas G., R., Cochrane, T. S., Iltis, H. H., Santana M., F. J., and Guzmán H., L. 1995 Flora de Manantlán. SIDA, Botanical Miscellany No. 13. Botanical Research Institute of Texas, Ft. Worth.Google Scholar
Voorhies, B. 1976 The Chantuto People :An Archaic Period Society of the Chiapas Littoral, Mexico. Papers 41. New World Archaeological Foundation, Brigham Young University, Provo, Utah.Google Scholar
Voorhies, B., Michaels, G. H., and Riser, G. M. 1991 Ancient Shrimp Fishery. National Geographic Research and Exploration 7:2035.Google Scholar
Whitaker, T. W., and Cutler, H. 1986 Cucurbits from Preceramic Levels at Guilá Naquitz. In Guilá Naquitz: Archaic Foraging and Early Agriculture in Oaxaca, Mexico, edited by K. V Flannery, pp. 275279. Academic Press, New York.Google Scholar
Whitaker, T. W., Cutler, H., and MacNeish, R. S. 1957 Cucurbit Materials from the Caves Near Ocampo, Tamaulipas. American Antiquity 22:352358.CrossRefGoogle Scholar
Wilkerson, S. J. 1975 Pre-Agricultural Village Life: The Late Preceramic Period in Veracruz. Contributions 27:111–122. University of California Archaeological Facility, Berkeley.Google Scholar
Wilkes, H. G. 1979 Mexico and Central America as a Center for the Origin of Maize. Crop Improvement (India) 6:118.Google Scholar