Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T01:29:03.283Z Has data issue: false hasContentIssue false

Roman-period trade in ceramic building materials on the Levantine Mediterranean coast: evidence from a farmstead site near Ashqelon/Ascalon, Israel

Published online by Cambridge University Press:  02 May 2024

Anat Cohen-Weinberger
Affiliation:
Israel Antiquities Authority
Nir-Shimshon Paran
Affiliation:
Israel Antiquities Authority
Itamar Taxel
Affiliation:
Israel Antiquities Authority

Abstract

The production and distribution of ceramic building materials (CBM) in the Roman period have long attracted the attention of archaeologists, as they provide clues to aspects of trade, identity, and technological and architectural traditions. However, there has been a notable scarcity of studies focusing on plain CBM in the southern Levant, particularly in the Mediterranean coastal region. This study concentrates on CBM (bricks, tubuli, drainage pipes, and roof tiles) from a Roman-period wealthy farmstead (Khirbat Khaur el-Bak) near the city of Ashqelon/Ascalon, apparently owned by a serving member of the military or a veteran. The petrographic analyses indicate that apart from the locally produced drainage pipes, the CBM were imported from overseas, namely Cilicia and Beirut. The results shed light on CBM trade in the Eastern Mediterranean, and on the complex nature of the population and material life in and around Roman Ashqelon, which included local and foreign elements.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

‘Ad, U., Bar-Nathan, R., and Taxel, I.. 2022. “The Roman veterans’ settlement at Moẓa c. AD 70–130.” In Cities, Monuments and Objects in the Roman and Byzantine Levant: Studies in Honour of Gabi Mazor, ed. Atrash, W., Overman, A., and Gendelman, P., 148–56. Oxford: Archaeopress.Google Scholar
Adelhardt, W., Gaertner, H.-R., Hoppe, P., Magnusson, N. H., Mollat, H., Tessensohn, F., Toloczyki, M., Trurnit, P., and Voges, A.. 1998. International Geological Map of Europe and the Mediterranean Regions 1:1,500,000: Sheet F6 Halab. Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe.Google Scholar
Almagor, G., and Hall, J. K.. 1980. “Morphology of the continental margin of northern Israel and southern Lebanon.” Israel Journal of Earth Sciences 29: 245–52.Google Scholar
Al-Shorman, A. H. B., Al-Muheisen, Z. H., Khalayleh, R. M.. 2023, and Al-Daire, J. A.. “The mineralogical, chemical, and physical properties of ceramic building materials: Khirbet Edh-Dharih in southern Jordan (first century BC–seventh century AD).” Journal of Eastern Mediterranean Archaeology and Heritage Studies 11, no. 4: 390418.CrossRefGoogle Scholar
Arubas, B., and Goldfus, H.. 1995. “The kilnworks of the Tenth Legion Fretensis.” In The Roman and Byzantine Near East: Some Recent Archaeological Research, ed. Humphrey, J. H., 95107. JRA Suppl. 14. Ann Arbor: JRA.Google Scholar
Arubas, B., and Goldfus, H.. 2019. “The Legio X Fretensis kilnworks at the Jerusalem International Convention Center.” In Ancient Jerusalem Revealed, Archaeological Discoveries, 1998–2018, ed. Geva, H., 184–94. Jerusalem: Israel Exploration Society.Google Scholar
Aviam, M., and Stern, E. J.. 1997. “Burial caves near Ḥ. Sugar.” ‘Atiqot 33: 89102. (Hebrew with English summary, p. 16*)Google Scholar
Avnimelech, M. 1943. “The geological history of the Coastal Plain, Nahariyya and its adjacent area.” Yedioth-Israel Exploration Society 10, no. 2–3: 6674. (Hebrew)Google Scholar
Bahat, D. 1974. “A roof tile of the Legio VI Ferrata and pottery vessels from Ḥorvat Ḥazon.” IEJ 24: 160–69.Google Scholar
Bakler, N. 1989. “Regional geology.” In Excavations at Tel Michal Israel, ed. Herzog, Z., Rapp, G., and Negbi, O., 198202. Institute of Archaeology Monograph Series 8. Tel Aviv: Emery and Claire Yass Publications in Archaeology of the Institute of Archaeology, Tel Aviv University.Google Scholar
Barag, D. 1967. “Brick stamp-impressions of the Legio X Fretensis.” ErIsr 8: 168–82. (Hebrew with English summary, p. 73*)Google Scholar
Bardill, J. 2004. Brick Stamps of Constantinople. Oxford: Oxford University Press.Google Scholar
Bar-Nathan, R., and Ganor, S.. 2021. “The basilica of Ashkelon between Herod and the Severan dynasty.” In The Basilica in Roman Palestine: Adoption and Adaption Processes, in Light of Comparanda in Italy and North Africa. Workshop 5–6 December 2019, Tübingen, ed. Dell'Acqua, A. and Peleg-Barkat, O., 109–31. Rome: Quasar.Google Scholar
Be'eri, R., and Levi, D.. 2018. “Pottery production in Jerusalem in the Second Temple period until the Second Jewish Revolt in light of the Crowne Plaza Hotel and Jerusalem International Convention Center excavations.” Cathedra 168: 738. (Hebrew with English abstract, p. 211)Google Scholar
Ben-Shlomo, D. 2012. “Petrographic analysis of stamped roof tiles from the Jewish Quarter.” In Jewish Quarter Excavations in the Old City of Jerusalem Conducted by Nahman Avigad, 1969–1982. Vol. 5. The Cardo (Area X) and the Nea Church (Areas D and T), Final Report, ed. Gutfeld, O., 393–95. Jerusalem: Israel Exploration Society.Google Scholar
Bes, P. 2020. “Long-distance imported pottery at Horvat Kur (Galilee, Israel): Categories and quantities.” RCRFActa 46: 559–67.Google Scholar
Bettles, E. 2003. Phoenician Amphora Production and Distribution in the Southern Levant: A Multi-Disciplinary Investigation into Carinated-Shoulder Amphorae of the Persian Period (539–332 BC). BAR International Series 1183. Oxford: Archaeopress.Google Scholar
Betts, I. M. 1985. “A Scientific Investigation of the Brick and Tile Industry of York to the Mid-Eighteenth Century.” PhD diss., Bradford Univ.Google Scholar
Blow, W. H. 1956. “Origin and evolution of the foraminiferal genus Orbulina d'Orbigny.” Micropaleontology 2: 5770.CrossRefGoogle Scholar
Boehm, R., Master, D. M., and Blanc, R. Le. 2016. “The basilica, bouleuterion, and civic center of Ashkelon.” AJA 120: 271324.CrossRefGoogle Scholar
Buchbinder, B. 1975. “Stratigraphic significance of the alga Amphiroa in Neogene Quaternary bioclastic sediments from Israel.” Israel Journal of Earth Sciences 24: 4448.Google Scholar
Butcher, K. 2003. Roman Syria and the Near East. Los Angeles: Getty Publications with the British Museum Press.Google Scholar
Campbell, J. W. 2021. “The development of water pipes: A brief introduction from ancient times until the industrial revolution.” Paper presented at the Eighth Annual Conference of the Construction History Society at Queens’ College, Cambridge, United Kingdom, August 2021. https://www.arct.cam.ac.uk/sites/www.arct.cam.ac.uk/files/p_33campbell.pdfGoogle Scholar
CIIP II. 2011. Corpus Inscriptionum Iudaeae/Palaestinae. Vol. 2. Caesarea and the Middle Coast, 1121–2160, ed. Cotton, H. M., Eck, W., Isaac, B., and Ameling, W.. Berlin and Boston: de Gruyter.Google Scholar
CIIP III. 2014. Corpus Inscriptionum Iudaeae/Palaestinae. Vol. 3. South Coast 2161–2648, ed. Ameling, W., Cotton, H. M., Eck, W., Isaac, B., Kushnir-Stein, A., Misgav, H., Price, J., and Yardeni, A.. Berlin and Boston: de Gruyter.Google Scholar
Clark, G. N., and BouDagher-Fadel, M.. 2020. “Insights into the Cenozoic geology of North Beirut (harbour area): Biostratigraphy, sedimentology and structural history.” UCL Open Environment 2. https://doi.org/10.14324/111.444/ucloe.000004.CrossRefGoogle ScholarPubMed
Cohen-Weinberger, A. 2003. “Petrographic analysis of bricks from Area VI.” In The Temple Mount Excavations in Jerusalem 1968–1978 Directed by Benyamin Mazar. Final Reports Vol. II: The Byzantine and Early Islamic Periods, ed. Mazar, E., 199. Qedem 43. Jerusalem: Institute of Archaeology, Hebrew University.Google Scholar
Cohen-Weinberger, A. 2004. “A petrographic study of the Early Bronze Age pottery from Ashqelon, Afridar–Area E.” ‘Atiqot 45: 101–4.Google Scholar
Cohen-Weinberger, A. 2007. “Petrography of Middle Bronze 2 Age Pottery: Implications to Understanding Egypto-Canaanite Relations.” PhD diss., Tel Aviv Univ. (Hebrew with English summary, pp. I–IV)Google Scholar
Cohen-Weinberger, A. 2019. “Petrographic analysis of Middle Bronze Age II vessels from burial pits in Ashqelon.” ‘Atiqot 97: 8996.Google Scholar
Cohen-Weinberger, A. 2022. “Petrographic analysis of selected vessels.” In Ashqelon Barne‘a, Vol. 2, ed. Golani, A., 9199. IAA Reports 70. Jerusalem: Israel Antiquities Authority.CrossRefGoogle Scholar
Cohen-Weinberger., A., Levi, D., and Be'eri, R.. 2020. “On the raw materials in the ceramic workshops of Jerusalem, before and after 70 C.E.” BASOR 383: 3359.Google Scholar
Cohen-Weinberger, A., Szanton, N., and Lieberman, T.. 2022. “IVL impressions and their implications for the production of ceramic building materials in Aelia Capitolina.” Tel Aviv 49: 98114.CrossRefGoogle Scholar
Cotton, H., and Geiger, J.. 1989. Masada II. The Yigael Yadin Excavations 1963–1965: Final Reports: The Latin and Greek Documents. Jerusalem: Israel Exploration Society.Google Scholar
Craig, A. H. 2013. “Tubuli and their Use in Roman Arabia, with a Focus on Humayma (Ancient Hauarra).” M.A. diss. Victoria Univ., Victoria.Google Scholar
Dan, J., Marish, S., and Saltzman, G.. 1975. Soils of the Ashqelon–Yad Mordekhay Region. Soil and Water Pamphlet 153. Bet Dagan: Volcani Center Institute. (Hebrew)Google Scholar
Dan, J., and Raz, Z.. 1970. Soil Association Map of Israel, 1:250,000. Bet Dagan: Volcani Center Institute. (Hebrew)Google Scholar
Darvill, T., and McWhirr, A.. 1984. “Brick and tile production in Roman Britain: Models of economic organisation.” WorldArch 15, no. 3: 239–61.Google Scholar
Di Segni, L., Tsafrir, Y., and Green, J.. 2017. Onomasticon of Iudaea-Palaestina and Arabia in the Greek and Latin Sources, Vol. 2, pt. 2. Arabia, Chapter 5—Azzeira: Research Bibliography and Maps. Jerusalem: Israel Academy of Sciences and Humanities.Google Scholar
Dubertret, L. 1945. Carte géologique au 50.000e: feuille de Beyrouth. Beirut: République libanaise, ministère des travaux publics.Google Scholar
Dubertret, L. 1962. Carte géologique du Liban, Syrie et bordure des pays voisins, 1:1,000,000. Paris: Muséum National d'Histoire Naturelle.Google Scholar
Dubertret, L. 1966. “Liban, Syrie, et bordure des pays voisins.” Notes et Mémoires sur le Moyen-Orient 8: 251–58.Google Scholar
Edelstein, G. 1990. “What's a Roman villa doing outside Jerusalem?” Biblical Archaeology Review 16: 3242.Google Scholar
Edelstein, G. 1993. “A Roman villa at ‘Ein Ya‘el.” Qadmoniot 103–4: 114–19. (Hebrew)Google Scholar
Edwards, D. 2009. “Qana roof tiles: Preliminary report.” In A Wandering Galilean: Essays in Honour of Seán Freyne, ed. Rodgers, Z., 225–27. Leiden: Brill.Google Scholar
El Kareh, G. 2010. “The basal cretaceous sandstone of Lebanon past, present and future: Climate change threats.” In The 1st International Applied Geological Congress, Department of Geology, Islamic Azad University – Mashad Branch, Iran, 26–28 April 2010, 1515–21. [s.n.] https://conference.khuisf.ac.ir/DorsaPax/userfiles/file/pazhohesh/zamin%20mashad/271.pdfGoogle Scholar
Emery, K. O., and George, C. J.. 1963. The Shores of Lebanon. Beirut: American University of Beirut.Google Scholar
Fragnoli, P., Boccalon, E., and Liberotti, G.. 2023. “Designing a ‘yellow brick road’ for the archaeometric analyses of fired and unfired bricks.” Journal of Cultural Heritage 59: 231–46.CrossRefGoogle Scholar
Fuks, G. 2001. A City of Many Seas: Ashkelon during the Hellenistic and Roman Periods. Jerusalem: Yad Izhak Ben Zvi. (Hebrew)Google Scholar
Gadot, Y., Freud, L., Tal, O., and Taxel, I.. 2016a. “Sub-Sector AWS1: Squares S–BB/6–14.” In Ramat Raḥel III: Final Publication of Yohanan Aharoni's Excavations (1954, 1959–1962), Vol. 1, ed. Lipschits, O., Gadot, Y., and Freud, L., 213–31. Tel Aviv University, Monograph Series of the Institute of Archaeology 35. University Park, PA: Eisenbrauns; Tel Aviv: Emery and Claire Yass Publications in Archaeology, Tel Aviv University.Google Scholar
Gadot, Y., Tal, O., and Taxel, I.. 2016b. “Sub-Sector ACS3: Squares Q–V/20–23.” In Ramat Raḥel III: Final Publication of Yohanan Aharoni's Excavations (1954, 1959–1962), Vol. 1, ed. Lipschits, O., Gadot, Y., and Freud, L., 172202. Tel Aviv University, Monograph Series of the Institute of Archaeology 35. University Park, PA: Eisenbrauns; Tel Aviv: Emery and Claire Yass Publications in Archaeology, Tel Aviv University.Google Scholar
Ganor, A., Ganor, S., Klein, A., and Klein, E.. 2010a. “Bet Guvrin (north).” HA–ESI 122. http://www.hadashot-esi.org.il/Report_Detail_Eng.aspx?id=1618&mag_id=117.Google Scholar
Ganor, A., Klein, A., Ganor, S., and Klein, E.. 2010b. “A Roman villa at ‘Urkan el-Khala northwest of Eleutheropolis.” Qadmoniot 139: 2629. (Hebrew)Google Scholar
Gass, I. G., Macleod, C. J., Murton, B. J., Panayiotou, P., Simonian, K. O., and Xenophontos, C.. 1994. The Geology of the Southern Troodos Transform Fault Zone. Nicosia: Geological Survey Department.Google Scholar
Gavish, E., and Friedman, G. M.. 1969. “Progressive diagenesis in Quaternary to Late Tertiary carbonate sediments: Sequence and time scale.” Journal of Sedimentary Petrology 39, no. 3: 9801006.Google Scholar
Glass, J. 1980. “Petrological analysis of a type A tegula.” In Tell Keisan (1971–1976), Une cité phénicienne en Galilée, ed. Briend, J. and Humbert, J.-B., 8788. Fribourg: Editions universitaires.Google Scholar
Goren, Y. 2005. “Appendix: The pottery technology.” In Excavations on the Site of the Jerusalem International Convention Center (Binyanei Ha'uma) 1: A Settlement of the Late First to Second Temple Period, The Tenth Legion's Kilnworks, and a Byzantine Monastic Complex. The Pottery and Other Small Finds, ed. Arubas, B. and Goldfus, H., 192–94. JRA Suppl. 60. Portsmouth, RI: JRA.Google Scholar
Goren, Y., Finkelstein, I., and Na'aman, N.. 2004. Inscribed in Clay: Provenance Study of the Amarna Letters and Other Ancient Near Eastern Texts. Sonia and Marco Nadler Institute of Archaeology Monograph Series 23. Tel Aviv: Emery and Claire Yass Publications in Archaeology of the Institute of Archaeology, Tel Aviv University.Google Scholar
Griffiths, D. 2003. “Petrographic analysis of Middle Bronze Age burial jars from Sidon.” Archaeology and History in Lebanon 17: 1721.Google Scholar
Griffiths, D. R., Glanfield, D. A., and Sayegh, H.. 1998. “Fabric analysis of jars and amphorae from Loci 130 and 135–138.” In Un quartier du port phénicien de Beyrouth au Fer III/ Perse: les objects, ed. Elayi, J. and Sayegh, H., 4551. Transeuphratène 6. Paris: Gabalda.Google Scholar
Gur, B., and Goldsmith, V.. 1988. “Beach sediments of the northern Carmel Coast.” Israel Journal of Earth Sciences 37: 2336.Google Scholar
Gutfeld, O., and Nenner-Soriano, R.. 2012. “Stamp impressions of the Legio X Fretensis from the cardo and the Nea Church.” Jewish Quarter Excavations in the Old City of Jerusalem Conducted by Nahman Avigad, 1969–1982. Vol. 5. The Cardo (Area X) and the Nea Church (Areas D and T), Final Report, ed. Gutfeld, O., 378–92. Jerusalem: Israel Exploration Society.Google Scholar
Hamari, P. 2011. “Signifying Roman in the east: Identity and material culture in Roman archaeology.” In Archaeology of Social Relations: Ten Case Studies by Finnish Archaeologists, ed. Äikäs, T., Lipkin, S., and Salmi, A.-K., 77102. Oulu: University of Oulu.Google Scholar
Hamari, P. 2017. “The roofscapes of Petra: The use of ceramic roof tiles in a Nabataean-Roman urban context.” In Forms of Dwelling: 20 Years of Taskscapes in Archaeology, ed. Rajala, U. and Mills, P., 85113. Oxford: Oxbow.Google Scholar
Hamari, P. 2019. “Roman-Period Roof Tiles in the Eastern Mediterranean: Towards Regional Typologies.” PhD diss., Univ. of Helsinki.Google Scholar
Hoss, S. 2005. Baths and Bathing: The Culture of Bathing and the Baths and Thermae in Palestine from the Hasmoneans to the Moslem Conquest. BAR International Series 1346. Oxford: British Archaeological Reports.Google Scholar
Klein, E. 2010. “The origins of the rural settlers in Judean mountains and foothills during the Late Roman period.” New Studies on Jerusalem 16: 321–50. (Hebrew)Google Scholar
Klein, E. 2011. “Aspects of the Material Culture of Rural Judea During the Late Roman Period (135–324 CE).” PhD diss., Bar-Ilan Univ., Ramat Gan. (Hebrew)Google Scholar
Köhler, C. E., and Ownby, M.. 2011. “Levantine imports and their imitations from Helwan.” Ägypten und Levante / Egypt and the Levant 21: 3146.CrossRefGoogle Scholar
Kowalewska, A. 2021. Bathhouses in Iudaea/Syria-Palaestina and Provincia Arabia from Herod the Great to the Umayyads. Oxford: Oxbow.CrossRefGoogle Scholar
Kurzmann, R. 2006. Roman Military Brick Stamps: A Comparison of Methodology. BAR International Series 1543. Oxford: British Archaeological Reports.CrossRefGoogle Scholar
Laflı, E., and Buora, M.. 2021/2022. “Terracotta sarcophagi from the eastern Mediterranean.” Mediterranean Archaeology 34–35: 83116.Google Scholar
Lieberman, T., Cohen-Weinberger, A., Solomon, A., Hagbi, M., Uziel, J., and Ecker, A.. 2022. “It’s not just another brick in the wall: The ceramic building materials of Colonia Aelia Capitolina.” IEJ 72: 89112.Google Scholar
Lund, J. 2015. A Study of the Circulation of Ceramics in Cyprus from the 3rd Century BC to the 3rd Century AD. Gӧsta Enbom Monographs 5. Aarhus: Aarhus University Press.CrossRefGoogle Scholar
Master, D. M. 2001. “The Seaport of Ashkelon in the Seventh Century BCE: A Petrographic Study.” PhD diss., Harvard Univ.Google Scholar
Master, D. M. 2003. “Trade and politics: Ashkelon's balancing act in the seventh century B.C.E.” BASOR 330: 4764.Google Scholar
McComish, J. M. 2012. “An Analysis of Roman Ceramic Building Material from York and its Immediate Environs.” MA Thesis, Univ. of York.Google Scholar
McWhirr, A. 1979a. “Tile-kilns in Britain.” In Roman Brick and Tile: Studies in Manufacture, Distribution and Use in the Western Empire, ed. McWhirr, A., 97190. BAR International Series 68. Oxford: British Archaeological Reports.CrossRefGoogle Scholar
McWhirr, A. 1979b. “Origin of legionary tile-stamping in Britain.” In Roman Brick and Tile: Studies in Manufacture, Distribution and Use in the Western Empire, ed. McWhirr, A., 253–60. BAR International Series 68. Oxford: British Archaeological Reports.CrossRefGoogle Scholar
Mills, P. 2005. “The Ancient Mediterranean Trade in Ceramic Building Material: A Case Study in Carthage and Beirut.” PhD diss., Univ. of Leicester.Google Scholar
Mills, P. 2013a. The Ancient Mediterranean Trade in Ceramic Building Materials: A Case Study in Carthage and Beirut. Roman and Late Antique Mediterranean Pottery 2. Oxford: Archaeopress.Google Scholar
Mills, P. 2013b. “The potential of ceramic building materials in understanding Late Antique archaeology.” In Field Methods and Post-Excavation Techniques in Late Antique Archaeology, ed. Lavan, L. and Mulryan, M., 573–94. Late Antique Archaeology 9. Leiden: Brill.Google Scholar
Montana, G., Randazzo, L., Barca, D., and Carroll, M.. 2021. “Archaeometric analysis of building ceramics and ‘dolia defossa’ from the Roman imperial estate of Vagnari (Gravina in Puglia, Italy).” JAS: Reports 38: 103057, 1–14.Google Scholar
Nir, Y. 1985. “Israel.” In The World's Coastline, ed. Bird, E. C. F. and Schwartz, M. L., 505–11. New York: Van Nostrand Reinhold.Google Scholar
Nir, Y. 1989. Sedimentological Aspects of the Israel and Sinai Mediterranean Coasts. Geological Survey of Israel Internal Report. Jerusalem: Geological Survey of Israel. (Hebrew)Google Scholar
Orni, E., and Efrat, E.. 1964. Geography of Israel. Jerusalem: Israel Universities Press.Google Scholar
Osband, M. 2014. “Ceramic Ecology of the Golan in the Roman and Early Byzantine Periods.” PhD diss., Bar-Ilan Univ.Google Scholar
Ownby, M., and Griffiths, D.. 2009. “The petrographic analysis of beach sand from Sidon to determine its utility for ceramic provenance studies.” Archaeology and History in Lebanon 29: 5667.Google Scholar
Parks, D. A., Aviam, M., and Stern, E. J.. 1997. “Clay coffins from Agia Napa: Makronisos and their connections.” In Agia Napa: Excavations at Makronisos and the Archaeology of the Region, ed. Hadjisavvas, S., 189–96. Nicosia: Agia Napa Municipality.Google Scholar
Parks, D. A., and Neff, H.. 2002. “A geochemical vector for trade: Cyprus, Asia Minor and the Roman East.” In Geochemical Evidence for Long-Distance Exchange, ed. Glascock, M. D., 205–14. Westport: Bergin and Garvey.CrossRefGoogle Scholar
Parlak, O., Karaoğlan, F., Rizaoğlu, T., Nurlu, N., Bağci, U., V. Hӧck, A. Ӧztüfekçi Önal, S. Kürüm, and Y. Topak. 2012. “Petrology of the İspendere (Malatya) ophiolite from southeast Anatolia: Implications for the Late Mesozoic evolution of the southern Neotethyan Ocean.” Geological Society, London, Special Publications 372: 219–47.CrossRefGoogle Scholar
Peacock, D. P. S. 1984. “Ceramic building materials.” In Excavations at Carthage: The British Mission, Vol. 1, pt. 2, The Avenue du President Habib Bourguiba, Salammbo: The Pottery and Other Ceramic Objects from the Site, ed. Fulford, M. G. and Peacock, D. P. S., 242–46. Sheffield: University of Sheffield.Google Scholar
Pierce, G. A., and Master, D. M.. 2015. “Ashkelon as maritime gateway and central place.” In The Leon Levy Expedition to Ashkelon – Ashkelon 5: The Land Behind Ashkelon, ed. Huster, Y., 109–24. Winona Lake: Eisenbrauns.Google Scholar
Quinn, P. S. 2022. Thin Section Petrography, Geochemistry and Scanning Electron Microscopy of Archaeological Ceramics. Oxford: Archaeopress.CrossRefGoogle Scholar
Rautman, M. L. 2003. A Cypriot Village of Late Antiquity: Kalavasos-Kopetra in the Vasilikos Valley. JRA Suppl. 52, Portsmouth, RI: JRA.Google Scholar
Reynolds, P. 1997–98. “Pottery production and economic exchange in second century Berytus: Some preliminary observations of ceramic trends from quantified ceramic deposits from the Aub-Leverhulme excavations Beirut.” Berytus 43: 35110.Google Scholar
Reynolds, P. 2005. “Levantine amphorae from Cilicia to Gaza: A typology and analysis of regional production trends from the 1st to the 7th centuries.” In LRCW 1: Late Roman Coarse Wares, Cooking Wares and Amphorae in the Mediterranean: Archaeology and Archaeometry (Barcelona, 14–16 March 2002), ed. M, J.. Esparraguera, Gurt i, J. Buxeda i Garrigós, and M. A. Cau Ontiveros, 563611. BAR International Series 1340. Oxford: Archaeopress.Google Scholar
Rohrlich, V., and Goldsmith, V.. 1984. “Sediment transport along the southern Mediterranean: A geological perspective.” Geo-Marine Letters 4: 99103.CrossRefGoogle Scholar
Rosenthal-Heginbottom, R. 2019. Jerusalem: The Western Wall Plaza Excavations 2: The Pottery from the Eastern Cardo. IAA Reports 64. Jerusalem: Israel Antiquities Authority.Google Scholar
Russell, B. 2016. “Imported building materials in North Africa: Brick, stone and the role of return cargoes.” In De Africa Romaque: Merging Cultures Across North Africa, ed. Mugnai, N., Nikolaus, J., and Ray, N., 173–84. London: Society for Libyan Studies.Google Scholar
Safrai, Z. 1994. The Economy of Roman Palestine. London and New York: Routledge.Google Scholar
Sanlaville, P. 1977. Etude géomorphologique de la région littorale du Liban. Publications de l'Université libanaise 1. Beirut: Publications de l'Université libanaise.Google Scholar
Shapiro, A. 1997. “Petrographic analysis of Roman clay sarcophagi from northwestern Israel and Cyprus.” ‘Atiqot 33: 24.Google Scholar
Shapiro, A. 2012. “Petrographic analysis of the Crusader-period pottery.” In Akko I: The 1991–1998 Excavations: The Crusader-Period Pottery, Part 2, ed. Stern, E. J., 103–26. IAA Reports 51. Jerusalem: Israel Antiquities Authority.CrossRefGoogle Scholar
Shapiro, A. 2017. “Petrographic examination of tiles, bricks and mortaria from Legio.” ‘Atiqot 89: 4147.Google Scholar
Sivan, D. 1996. Paleogeography of the Galilee Coastal Plain During the Quaternary. Geological Survey of Israel Report GSI/18/96. Jerusalem: Geological Survey of Israel. (Hebrew with English summary)Google Scholar
Smith, L., Bourriau, J., and Serpico, M.. 2000. “The provenance of Late Bronze Age transport amphorae found in Egypt.” Internet Archaeologist 9. https://doi.org/10.11141/ia.9.6.Google Scholar
Sneh, A., and Rosensaft, M.. 2008. Geological Map of Israel 1:50:000. Ashqelon, Sheet 10–III. Jerusalem: Geological Survey of Israel.Google Scholar
Stager, L. E., Schloen, J. D., Master, D. M., Press, M. D., and Aja, A.. 2008. “Stratigraphic overview.” In The Leon Levy Expedition to Ashkelon: Ashkelon 1, Introduction and Overview (1985–2006), ed. Stager, L. E., Schloen, J. D., and Master, D. M., 215325. Winona Lake: Eisenbrauns.Google Scholar
Stern, E. J., Waksman, S. Y., and Shapiro, A.. 2020. “The impact of the Crusades on ceramic production and use in the southern Levant: Continuity or change?” In Multidisciplinary Approaches to Food and Foodways in the Medieval Eastern Mediterranean, ed. Waksman, S. Y., 113–46. Lyon: Maison de l'Orient et de la Méditerranée.CrossRefGoogle Scholar
Tapio, H. 1975. Organization of Roman Brick Production in the First and Second Centuries A.D. An Interpretation of Roman Brick Stamps. Acta Instituti Romani Finlandiae 9: 1. Helsinki: Suomalainen Tiedeakatemia.Google Scholar
Taxel, I. 2018. “Late Antique Ionic column capitals in the countryside of central Palestine between provincial trends and classical traditions.” Studies in Late Antiquity 2, no. 1: 84125.CrossRefGoogle Scholar
Taxel, I., Paran, N. S., and Weiss, S.. 2020. “Khirbat Khaur el-Bak (North).” HA–ESI 132. http://www.hadashot-esi.org.il/Report_Detail_Eng.aspx?id=25740&mag_id=128.Google Scholar
Tepper, Y., David, J., and Adams, J. M.. 2016. “The Roman VIth Legion Ferrata at Legio (el-Lajjun), Israel: Preliminary report of the 2013 excavation.” Strata 34: 91123.Google Scholar
Tomber, R. 1987. “Evidence for long-distance commerce: Imported bricks and tiles at Carthage.” RCRFActa 25–26: 161–74.Google Scholar
Uytterhoeven, I. 2011. “Bathing in a ‘western style’: Private bath complexes in Roman and Late Antique Asia Minor.” IstMitt 61: 287346.Google Scholar
Vaughan, S. J. 1999. “Contributions of petrography to the study of archaeological ceramics and man-made building materials in the Aegean and eastern Mediterranean.” In The Practical Impact of Science on Near Eastern and Aegean Archaeology, ed. Pike, S. and Gitin, S., 117–25. London: Archetype.Google Scholar
Vukosavović, F., Cohen-Weinberger, A., Gadot, Y., Bocher, E., Bejarano, O., and Shalev, Y.. 2022. “Hellenistic roof tiles in Jerusalem.” JHP 6: 5774.Google Scholar
Waksman, S. Y., Stern, E. J., Segal, I., Porat, N., and Yellin, J. 2008. “Elemental and petrographic analyses of local and imported ceramics from Crusader Acre.” ‘Atiqot 59: 157–90.Google Scholar
Walley, C. 1997. “The lithostratigraphy of Lebanon, a review.” Lebanese Science Bulletin 10: 81108.Google Scholar
Weksler-Bdolah, S., Bar-Nathan, R., Cohen-Weinberger, A., and Di Segni, L.. 2022. “‘(Work) of CILO’: An impression of a Roman-period private stamp from the Western Wall Tunnels.” ‘Atiqot 106: 239–55.Google Scholar
Whitbread, I. K. 1995. Greek Transport Amphorae: A Petrological and Archaeological Study. Fitch Laboratory Occasional Paper 4. Athens: British School of Athens.Google Scholar
Wilkes, J. J. 1979. “Importation and manufacture of stamped bricks and tiles in the province of Dalmatia.” In Roman Brick and Tile: Studies in Manufacture, Distribution and Use in the Western Empire, ed. McWhirr, A., 6572. BAR International Series 68. Oxford: British Archaeological Reports.Google Scholar
Williams, D. F., and Lund, J.. 2013. “Petrological analyses of ‘pinched-handle’ amphorae from the Akamas Peninsula, western Cyprus.” In The Transport Amphorae and Trade of Cyprus, ed. Lawall, M. L. and Lund, J., 155–64. Gösta Enbom Monograph Series 3. Aarhus: Aarhus University Press.CrossRefGoogle Scholar
Wyckoff, D. 1939. “Petrography of pottery.” In Early Pottery of the Jebeleh Region, ed. Enrich, A. M. H., 89101. Philadelphia: American Philosophical Society.Google Scholar
Zissu, B., Ganor, A., Jackson-Tal, R. E., and Klein, E.. 2020. “The Late Roman period settlement at Horvat ‘Ethri, Judean Shephelah.” In Ashkelon and its Vicinity. New Studies of the Southern Coastal Plain and the Judean Foothills in Honor of Dr. Nahum Sagiv, ed. Klein, E., Sasson, A., and Levy-Reifer, A., 161204. Tel Aviv: Resling. (Hebrew)Google Scholar
Zumoffen, G. 1926. Carte géologique du Liban. 1:200,000. Paris: Henry Barrère.Google Scholar