Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T19:15:05.972Z Has data issue: false hasContentIssue false

Roman-era alluvial waste in the Vistre de la Fontaine (Nîmes, southeast France): from a sacred spring to a contaminated river

Published online by Cambridge University Press:  05 June 2023

Clément Flaux
Mosaïques Archéologie, Cournonterral (France) , , ,
Sabrina Save
Amélie France, Troyes (France)
Maxime Scrinzi
Mosaïques Archéologie, Cournonterral (France) , , ,
Nicolas Minvielle Larousse
École Française de Rome, Rome (Italy); Aix Marseille Univ, CNRS, LA3M, Aix-en-Provence (France)
Christophe Vaschalde
Mosaïques Archéologie, Cournonterral (France) , , ,
Audrey Renaud
Mosaïques Archéologie, Cournonterral (France) , , ,
Margaux Tillier
Ipso Facto scop, Marseilles (France)
Abel Guihou
Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France , ,
Pierre Deschamps
Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France , ,
Alain Véron
Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France , ,


The excavation of a palaeochannel at the Vistre de la Fontaine 2-2 archaeological site, 3 km downstream from the ancient city of Nîmes (southeastern France), provided an accumulation sequence covering the last 2,500 years. Trace metal analyses of these alluvial sediments disclosed lead (Pb) contamination during the Early Roman Empire, with concentrations close to 1,000 ppm, a factor of 100 above the local geochemical background. This excess of Pb shows a uniform isotopic signature that may reflect unchanged ore sources, perhaps from the Massif Central or from Great Britain. The Pb peak accompanied visible waste that was transported in the sediments of the Vistre de la Fontaine at the time of the development of the Nîmes urban water supply and drainage network during the Early Roman Empire. This research shows the bimillennial persistence of palaeo-contamination in a peri-urban alluvial plain and the relevance of fluvial sedimentary archives in documenting ancient waste.

Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Arribas, A., and Tosdal, R. M.. 1994. “Isotopic composition of Pb in ore deposits of the Betic Cordillera, Spain: Origin and relationship to other European deposits.” Economic Geology 89, no. 5: 1074–93.CrossRefGoogle Scholar
Barbieri, M. 2016. “The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination.” Journal of Geology & Geophysics 5, no. 1: 1000237.CrossRefGoogle Scholar
Barnes, I. L., Shields, W. R., Murphy, T. J., and Brill, R. H.. 1974. “Isotopic analysis of Laurion lead ores.” In Archaeological Chemistry, ed. Beck, C. W., 110. Washington: American Chemical Society.Google Scholar
Baron, S., Lavoie, M., Ploquin, A., Carignan, J., Pulido, M., and De Beaulieu, J.-L.. 2005. “Record of metal workshops in peat deposits: History and environmental impact on the Mont Lozère Massif, France.” Environmental Science and Technology 39, no. 14: 5131–40.CrossRefGoogle ScholarPubMed
Baron, S., Carignan, J., Laurent, S., and Ploquin, A.. 2006. “Medieval lead making on Mont-Lozère Massif (Cévennes-France): Tracing ore sources by using Pb isotopes.” Applied Geochemistry 21: 241–52.CrossRefGoogle Scholar
Baron, S., Le Carlier, C., Carignan, J., and Ploquin, A.. 2009. “Archaeological reconstruction of medieval lead production: Implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes.” Applied Geochemistry 24: 2093–101.CrossRefGoogle Scholar
Bode, M., Rothenhöfer, P., and Batanero, D. G.. 2018. “Lost in the south: A Roman copper ingot from the area of Tarragona in the Baetica.” Revista Onoba 6: 243–48.Google Scholar
Brevart, O., Dupre, B., and Allegre, C. J.. 1982. “Metallogenic provinces and the re- mobilization process studied by lead isotopes; lead-zinc ore deposits from the southern Massif Central, France.” Economic Geology 77: 564–75.CrossRefGoogle Scholar
Chevillot, P., Séjalon, P., and Breuil, J.-Y.. 2008. “L'approche géomorphologique systématique à l’échelle d'un territoire : le cas de Nîmes.“ Les Cahiers de l'Inrap 2: 18.Google Scholar
Chevillot, P., Martin, S., Breuil, J.-Y., Pomaredes, H., and Sejalon, P.. 2010. “Mobilités et héritages dans la plaine de Nîmes (Gard, France). Regards croisés sur l'occupation humaine à l'Holocène.” Quaternaire 21: 459–74.CrossRefGoogle Scholar
Craddock, P. T., Freestone, I. C., Gale, N. H., Meeks, N. D., Rothenberg, B., and Tite, M. S.. 1985. “The investigation of a small heap of silver smelting debris from Rio Tinto, Huelva.” In Furnaces and Smelting Technology in Antiquity, ed. Craddock, P. T. and Hughes, M. J., 199217. London: British Museum.Google Scholar
de Vries, W., Schütze, G., Lots, S., Meili, M., Römkens, P., de Temmerman, L., and Jakubowski, M.. 2003. “Critical limits for cadmium, lead and mercury related to ecotoxicological effects on soil organisms, aquatic organisms, plants, animals and humans.” In Proceedings of the Expert Meeting on Critical Limits for Heavy Metals and Methods for their Application, ed. Schütze, G., Lorent, U., and Spranger, T., 2978. Berlin: Umweltbundesamt.Google Scholar
Delile, H. 2014. “Signatures des paléo-pollutions et des paléoenvironnements dans les archives sédimentaires des ports antiques de Rome et d’Éphèse.” PhD diss., Univ. Lumière Lyon 2.Google Scholar
Delile, H., Blichert-Toft, J., Goiran, J.-P., Keay, S., and Albarède, F.. 2014. “Lead in ancient Rome's city waters.” Proceedings of the National Academy of Sciences 111, no. 18: 6594–99.CrossRefGoogle ScholarPubMed
Delile, H., Blichert-Toft, J., Goiran, J.-P., Stock, F., Arnaud-Godet, F., Bravard, J.-P., Brückner, H., and Albarède, F.. 2015. “Demise of a harbor: A geochemical chronicle from Ephesus.” JAS 53: 202–13.Google Scholar
Delile, H., Keenan-Jones, D., Blichert-Toft, J., Goiran, J.-P., Arnaud-Godet, F., Romano, P., and Albarède, F.. 2016. “A lead isotope perspective on urban development in ancient Naples.” Proceedings of the National Academy of Sciences 113, no. 22: 6148–53.CrossRefGoogle ScholarPubMed
Delile, H., Keenan-Jones, D., Blichert-Toft, J., Goiran, J.-P., Arnaud-Godet, F., and Albarede, F.. 2017. “Rome's urban history inferred from Pb-contaminated waters trapped in its ancient harbor basins.” Proceedings of the National Academy of Sciences 114, no. 38: 10059–64.CrossRefGoogle ScholarPubMed
Delile, H., Pleuger, E., Blichert-Toft, J., and Wilson, A. I.. 2019. “Economic resilience of Carthage during the Punic Wars: Insights from sediments of the Medjerda delta around Utica (Tunisia).” Proceedings of the National Academy of Sciences 116, no. 20: 9764–69.CrossRefGoogle ScholarPubMed
Djaoui, D., ed. 2019. “Difficultés et intérêts à étudier un contexte portuaire fluviomaritime en zone périurbaine (50-14 apr. J.-C.).” In De la Gaule à l'Orient Méditerranéen. Fonctions et statuts des mobiliers archéologiques dans leur contexte, ed. Ballet, P., Lemaître, S., and Bertrand, I., 245–57. Rennes: Presses Universitaires de Rennes.Google Scholar
Doe, B. R. 1970. Lead Isotopes. Berlin: Springer Verlag.CrossRefGoogle Scholar
Doucelance, R., and Manhès, G.. 2001. “Reevaluation of precise lead isotope measurements by thermal ionization mass spectrometry: Comparison with determinations by plasma source spectrometry.” Chemical Geology 176: 361–77.CrossRefGoogle Scholar
Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., and Tack, F. M. G.. 2009. “Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review.” Science of The Total Environment 407, no. 13: 3972–85.CrossRefGoogle ScholarPubMed
Dupré Raventos, X., and J, A. Remolà Vallverdù, . 2000. Sordes urbis: la eliminación de residuos en la ciudad romana. Bibliotheca italica 24. Rome: “L'Erma” di Bretschneider.Google Scholar
Elmaleh, A., Galy, A., Allard, T., Dairon, R., Day, J. A., Michel, F., Marriner, N., Morhange, C., and Couffignal, F.. 2012. “Anthropogenic accumulation of metals and metalloids in carbonate-rich sediments: Insights from the ancient harbor setting of Tyre (Lebanon).” Geochimica et Cosmochimica Acta 82: 2338.CrossRefGoogle Scholar
Fabre, G., and Monteil, M.. 2011. “Urbanisation antique, hydrogéomorphologie et impacts postérieurs sur le site de Piémont de Nîmes.” In Temps de l'eau. Sites et monuments entre Vidourle et Rhône, ed. Fabre, G., 510. Nîmes: Bulletin de l'École Antique de Nîmes.Google Scholar
Fagel, N., Lechenault, M., Fontaine, F., Pleuger, E., Otten, J., Allan, M., Ghilardi, M., Mattielli, N., and Goiran, J.-P.. 2017. “Record of human activities in the Pb isotopes signatures of coastal sediments from the Roman archaeological site of Cala Francese, Cape Corsica (France).” JAS: Reports 12: 770–81.Google Scholar
Ferrand, J. L., Hamelin, B., and Monaco, A.. 1999. “Isotopic tracing of anthropogenic Pb inventories and sedimentary fluxes in the Gulf of Lions (NW Mediterranean sea).” Continental Shelf Research 19, no. 1: 2347.CrossRefGoogle Scholar
Fiches, J. L., and Rebière, J.. 2010. “Caisson décoré et tuyaux de plomb découverts à Ambrussum: questions d'adduction d'eau dans l'agglomération routière.” Revue Archéologique de Narbonnaise 43, no. 1: 313–30.CrossRefGoogle Scholar
Figueiral, I., Ivorra, S., Breuil, J.-Y., Bel, V., and Houix, B.. 2017. “Gallo-Roman Nîmes (southern France): A case study on firewood supplies for urban and proto-urban centers (1st B. C.-3rd A. D.).” Quaternary 458: 103–12.Google Scholar
Flaux, C., Scrinzi, M., and Djerbi, H.. 2022. “À quand remonte l’état de référence ‘naturel’ du Vistre de la Fontaine (Nîmes)?Méditerranée: Paleoenvironment, Geoarchaeology, Historical Geography. Scholar
Gelly, R., Fekiacova, Z., Guihou, A., Doelsch, E., Deschamps, P., and Keller, C.. 2019. “Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago.” Science of the Total Environment 665: 502–12.CrossRefGoogle ScholarPubMed
Hanel, N., and Bode, M.. 2016. “Messingbarren aus einem römischen Schiffswrack bei Aléria (Korsika).” In From Bright Ores to Shiny Metals. Festschrift for Andreas Hauptmann on the Occasion of 40 Years Research in Archaeometallurgy and Archaeometry, ed. Körlin, G., Prange, M., Stöllner, Th., and Yalçin, Ü., 167–81. Bochum: Der Anschnitt.Google Scholar
Hong, S., Candelone, J.-P., Patterson, C. C., and Boutron, C. F.. 1994. “Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations.” Science 265, no. 5180: 1841–43.CrossRefGoogle ScholarPubMed
Hunt-Ortiz, M. A. 2003. Prehistoric Mining and Metallurgy in South-West Iberian Peninsula. BAR International Series 1188. Oxford: British Archaeological Reports.CrossRefGoogle Scholar
Jallet, F., Barberan, S., Chevillot, P., Colonge, D., Forest, V., Mourre, V., Négroni, S., Pallier, C., Pellé, R., Ratsimbas, A., Séjalon, P., Duflot, L., Farge, A., Robin, F., and Vergély, H., eds. 2017. Vistre de la Fontaine 2 – Tranche 1 (Occitanie, Gard, Nîmes). Nîmes: INRAP Méditerranée.Google Scholar
Kilbride, C., Poole, J., and Hutchings, T.-R.. 2006. “A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni, and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses.” Environmental Pollution 143, no. 1: 1623.CrossRefGoogle ScholarPubMed
Krahn, L., and Baumann, A.. 1996. “Lead isotope systematics of epigenetic lead-zinc mineralization in the western part of the Rheinisches Schiefergebirge, Germany.” Mineralium Deposita 31, no. 3: 225–37.CrossRefGoogle Scholar
Labonne, M., Ben Othman, D., and Luck, J.-M.. 1998. “Recent and past anthropogenic impact on a Mediterranean lagoon: Lead isotope constraints from mussel shells.” Applied Geochemistry 13, no. 7: 885–92.CrossRefGoogle Scholar
Laperche, V., Dictor, M. C., Clozel-Leloup, B., and Baranger, P.. 2004. Guide méthodique du plomb appliqué à la gestion des sites et des sols pollués. Orléans: BRGM.Google Scholar
Le Guen, M., and Lancelot, J.. 1989. “Origine du Pb-Zn des minéralisations du Bathonien sud-cévenol. Apport de la géochimie isotopique comparée du plomb des galènes, de leur encaissant et du socle.Chronique de la recherche minière 495: 3136.Google Scholar
Le Guen, M., Orgeval, J. J., and Lancelot, J.. 1991. “Lead isotopic behavior in a polyphase Pb-Zn ore deposit, Les Malines (Cévennes, France).” Mineralium Deposita 26, no. 3: 180–88.CrossRefGoogle Scholar
Le Roux, G., Véron, A., and Morhange, C.. 2003. “Geochemical evidences of early anthropogenic activity in harbour sediments from Sidon.” Archaeology and History in Lebanon 18: 115–19.Google Scholar
Le Roux, G., Véron, A., and Morhange, C.. 2005. “Lead pollution in the ancient harbours of Marseilles.” In “Environnements littoraux méditerranées, héritages et mobilité,” Special edition, Méditerrannée 104, nos. 1–2: 3135.Google Scholar
Le-Roy, L., Couval, M., Scrinzi, M., Aspord-Mercier, S., Favennec, B., Renaud, A., Malignas, A., Gagnol, M., Mignot, O., Pech, J., Zaaraoui, Y., Canillos, T., Clément, N., and Garnotel, A.. 2019. Le Jardin du Musée de la Romanité. Saint-Joseph – Musée de la Romanité – 2. Nîmes, Gard (30). Cournonterral: Mosaïques Archéologie.Google Scholar
Leach, D. L., Premo, W., Lewchuk, M., Henry, B., Le Goff, M., Rouvier, H., Macquar, J. C., and Thibieroz, J.. 2001. “Evidence for Mississippi valley-type lead–zinc mineralization in the Cévennes region, southern France, during Pyrenees Orogeny.” In Mineral Deposits at the Beginning of the 21st Century, ed. Piestrzynski, A., 157–60. Lisse: Swets and Zeitlinger.Google Scholar
Leach, D., Macquar, J. C., Lagneau, V., Leventhal, J., Emsbo, P., Premo, W.. 2006. “Precipitation of lead-zinc ores in the Mississipi Valley-type deposit at Trèves, Cévennes region of southern France.” Geofluids 6: 2444.CrossRefGoogle Scholar
Lovering, T. G., ed. 1976. Lead in the Environment. Washington: US Geological survey professional paper 957.CrossRefGoogle Scholar
Manhès, G., Minster, J. F., Allègre, C. J.. 1978. “Comparative uranium-thorium-lead and study of the Saint Sèverin amphoterite: Consequences for early solar system chronology.” Earth and Planetary Science Letters 39, no. 1: 1424.CrossRefGoogle Scholar
Mantenant, J. 2014. “Montagnes métallifères de Gaule méditerranéenne. Approche archéologique et historique de la production des métaux en Languedoc occidental du début du second âge du Fer à la fin de la période romaine (IVème s. av. n. è. – Vème s. de n. è.).” PhD diss., Univ Toulouse-Le Mirail.Google Scholar
Mantenant, J., and Munoz, M.. 2017. “L'exploitation des gisements non-ferreux des Pyrénées de l'Est aux trois derniers siècles avant notre ère: une ruée vers l'argent? Le cas des Corbières.” Treballs d'Arqueologia 21: 149–79.CrossRefGoogle Scholar
Marcoux, E. 1986. “Isotopes du plomb et paragenèses métalliques, traceurs de l'histoire des gites minéraux. Illustration des concepts de source, d'héritage et de régionalisme dans les gites francais, applications en recherche minière.” PhD thesis, Univ. Clermont-Ferrand.Google Scholar
Marcoux, E., and Brill, H.. 1986. “Héritage et sources des métaux d'après la géochimie isotopique du plomb. Exemple des minéralisations filoniennes (Sb, Pb, Ba, F) du Haut-Allier (Massif Central, France).” Mineral Deposita 21, no. 1: 3543.CrossRefGoogle Scholar
Maréchal, J.-C., Petit, V., and Ladouche, B.. 2004. Synthèse des connaissances géologiques et hydrogéologiques sur le bassin d'alimentation de la Fontaine de Nîmes. Orléans: BRGM.Google Scholar
McConnell, J. R., Wilson, A.I., Stohl, A., Arienzo, M. M., Chellmann, N. J., Eckhardt, S., Thompson, E. M., Pollard, A. M., and Steffensen, J. P.. 2018. “Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity.” Proceedings of the Academy of Sciences 115, no. 22: 5726–31.CrossRefGoogle ScholarPubMed
Ménillet, F., and Paloc, H.. 1973. Notice de la carte géologique de Nîmes au 1/50 000. Orléans: BRGM.Google Scholar
Monna, F., Clauer, N., Toulkeridis, T., and Lancelot, J.R.. 2000. “Influence of anthropogenic activity on the lead isotope signature of Thau Lake sediments (southern France): origin and temporal evolution.” Applied Geochemistry 15, no. 9: 1291–305.CrossRefGoogle Scholar
Monteil, M. 1999. Nîmes antique et sa proche campagne. Étude de topographie urbaine et périurbaine (fin VIe s. av. J.-C. – VIe s. apr. J.-C.). Monographies d'archéologie méditerranéenne 3. Lattes: Association pour la recherche archéologique en Languedoc oriental; Diffusion, Libr. Archéologique.Google Scholar
Monteil, M., Barberan, S., Bel, V., and Hervé, M.-L.. 2003. “Dépotoirs domestiques et déchets artisanaux : l'exemple de Nîmes (Gard) au Haut-Empire.” In La ville et ses déchets dans le monde romain: rebuts et recyclages, ed. Ballet, P., Cordier, P., and Dieudonné-Glad, N., 121–31. Montagnac: Monique Mergoil.Google Scholar
Niederschlag, E., Pernicka, E., Seifert, Th., and Bartel-Heim, M.. 2003. “The determination of lead isotope ratios by multiple collector ICP-MS: A case study of early bronze age artifacts and their possible relation with ore deposits of the Erzgebirge.” Archaeometry 45, no. 1: 61100.CrossRefGoogle Scholar
Nin, N., and Leguilloux, M.. 2003. “La gestion des déchets à Aix-en-Provence dans l'Antiquité.” In La ville et ses déchets dans le monde romain: rebuts et recyclages, ed. Ballet, P., Cordier, P., and Dieudonné-Glad, N., 133–64. Montagnac: Monique Mergoil.Google Scholar
Nriagu, J. O. 1983. Lead and Lead Poisoning in Antiquity. Hoboken: John Wiley.Google Scholar
PAGD. 2020. Plan d'Aménagement et de Gestion Durable (PAGD) des ressources en eau et des milieux aquatiques & Règlement. Caissargues: ETPB Vistre-Vistrenque.Google Scholar
Parjanadze, T., and Bode, M.. 2017. “Roman silver objects from the ancient kingdom of Kartli (Caucasian Iberia) in Georgia (Mtskheta, Dedoplis Gora [Kareli district]) – a lead isotope investigation.” Metalla 23, no. 2: 3950.Google Scholar
Pomiès, C., Cocherie, A., Guerrot, C., Marcoux, E., and Lancelot, J.. 1988. “Assessment of the precision and accuracy of lead-isotope ratios measured by TIMS for geochemical applications: Example of massive sulphide deposits (Rio Tinto, Spain).” Chemical Geology 144, no. 1: 137–49.CrossRefGoogle Scholar
Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk-Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.. 2020. “The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP).” Radiocarbon 62, no. 4: 725–57.CrossRefGoogle Scholar
Renberg, I., Bindler, R., and Brännvall, M.-L.. 2001. “Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe.” The Holocene 11, no. 5: 511–16.CrossRefGoogle Scholar
Rohl, B. 1996. “Lead isotopes data from the isotrace laboratory, Oxford: Archaeometry data 2, galena from Britain and Ireland.” Archaeometry 38: 165–80.CrossRefGoogle Scholar
Rosman, K. J. R., Chisholm, W., Hong, S., Candelone, J. P., and Boutron, C. F.. 1997. “Lead from Carthaginian and Roman Spanish mines isotopically identified in Greenland ice dated from 600 BC to 300 AD.” Environmental Science and Technology 31, no. 12: 3413–16.CrossRefGoogle Scholar
Rothenhöfer, P., Hanel, N., and Bode, M.. 2017. “Bleicistae mit Produzenteninschriften aus dem römischen Schiffswrack von Rena Maiore (Sardinien). Arelate/Arles (Dép. Bouches-du-Rhône/F) als Umschlagplatz im überregionalen Metallhandel?Archäologisches Korrespondenzblatt 47, no. 2: 217–29.Google Scholar
Ruiz, C., Arribas, A., and Arribas, A. Jr. 2002. “Mineralogy and geochemistry of the Masa Valverde blind massive sulphide deposit, Iberian Pyrite Belt (Spain).” Ore Geology Review 19, no. 1: 122.CrossRefGoogle Scholar
Salel, T., Bruneton, H., Degeai, J.-P., Dolez, L., Mulot, M., and Lefèvre, D.. 2019. “Enregistrement sédimentaire de paléo-pollutions au plomb dans la basse vallée de l'Aude.” In Paysages pour l'homme, Actes du colloque international en hommage à Paul Ambert, ed. Laroche, M., Bruxelles, L., Galant, P., and Ambert, M., 133–39. Cabrières: Association Culturelle des Amis de Cabrières.Google Scholar
Sangster, D. F., Outridge, P. M., and Davis, W. J.. 2000. “Stable lead isotope characteristics of lead ore deposits of environmental significance.” Environmental Reviews 8, no. 2: 115–47.CrossRefGoogle Scholar
Scrinzi, M., Flaux, C., Djerbi, H., Vaschalde, C., Tillier, M., Renaud, A., Save, S., Malignas, A., Doyen, E., Caballero, N., and Errera, M.. 2021. Aménagement, franchissement et morphogénèse d'un cours d'eau dans la proche campagne nîmoise de l’âge du Fer à nos jours. Le Vistre de la Fontaine 2-2 (Nîmes, 30). Cournonterral: Mosaïques Archéologie.Google Scholar
Shotyk, W., Krachler, M., Martinez-Cortizas, A., Cheburkin, A. K., and Emons, H.. 2002. “A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12 370 14C yr BP, and their variation with Holocene climate change.” Earth and Planetary Science Letters 199, no. 1: 2137.CrossRefGoogle Scholar
Stanley, J.-D., Carlson, R. W., Van Beek, G., Jorstad, T. F., and Landau, E. A.. 2007. “Alexandria, Egypt, before Alexander the Great: A multidisciplinary approach yields rich discoveries.” GSA Today 17, no. 8: 410.CrossRefGoogle Scholar
Stock, F., Knipping, M., Pint, A., Ladstätter, S., Delile, H., Heiss, A. G., Laermanns, H., Mitchell, P. D., Ployer, R., Steskal, M., Thanheiser, U., Urz, R., Wennrich, V., and Brückner, H.. 2016. “Human impact on Holocene sediment dynamics in the eastern Mediterranean – the example of the Roman harbour of Ephesus.” Earth Surface Processes and Landforms 41, no. 7: 980–96.CrossRefGoogle Scholar
Stos-Gale, Z. A., and Gale, N. H.. 2009. “Metal provenancing using isotopes and the Oxford archaeological lead isotope data base (OXALID).” Archaeological and Anthropological Sciences 1, no. 3: 195213.CrossRefGoogle Scholar
Stos-Gale, Z. A., Gale, N. H., and Annetts, N.. 1996. “Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 3, ores from Aegean, part 1.” Archaeometry 38, no. 2: 381–90.CrossRefGoogle Scholar
Stos-Gale, Z. A., Gale, N. H., Houghton, J., and Speakman, R.. 1995. “Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 1, ores from western Mediterranean.” Archaeometry 37, no. 2: 407–15.CrossRefGoogle Scholar
Swainbank, I. G., Shepherd, T. J., Caboi, R., Masssoli-Novelli, R.. 1982. “Lead isotopic composition of some galena ores from Sardinia.” Periodico di Mineralogia 51, no. 3: 275–86.Google Scholar
Tillier, M. 2019. “Économie végétale et échanges en Méditerranée romaine (1er s. av. n.-è. – 5ème s. de n.è.). Étude carpologique de contextes portuaires.” PhD diss., Univ. Paul Valéry Montpellier 3.Google Scholar
Véron, A., Goiran, J.-P., Morhange, C., Marriner, N., and Empereur, J.-Y.. 2006. “Pollutant lead reveals the pre-Hellenistic occupation and ancient growth of Alexandria, Egypt.” Geophysical Research Letters 33, no. 6: 14.CrossRefGoogle Scholar
Véron, A., Morhange, C., Poirier, A., Angeletti, B., and Bertoncello, F.. 2018. “Geochemical markers of human occupation in the lower Argens valley (Fréjus, France): From protohistory to Roman times.” JAS: Reports 17: 242–49.Google Scholar
Veyrac, A. 2006. Nîmes romaine et l'eau. Paris: CNRS éditions.Google Scholar
Wagner, G. A., Gentner, W., Muller, O., Gale, N. H.. 1979. “Chemical and Lead Isotope Analyses of Ores from the Ancient Silver Mines on Siphnos.” Paper presented at the 19th International Symposium on Archaeometry, London.Google Scholar
WHO/FAO. 2001. Codex Alimentarius Commission. Food Additives and Contaminants. Food Standards Program, ALINORM 10/12A.Google Scholar