Last updated 10th July 2024: Online ordering is currently unavailable due to technical issues. We apologise for any delays responding to customers while we resolve this. For further updates please visit our website https://www.cambridge.org/news-and-insights/technical-incident
We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/pla.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that large-amplitude, non-planar, Alfvén-wave (AW) packets are exact nonlinear solutions of the relativistic magnetohydrodynamic equations when the total magnetic-field strength in the local fluid rest frame ($b$) is a constant. We derive analytic expressions relating the components of the fluctuating velocity and magnetic field. We also show that these constant-$b$ AWs propagate without distortion at the relativistic Alfvén velocity and never steepen into shocks. These findings and the observed abundance of large-amplitude, constant-$b$ AWs in the solar wind suggest that such waves may be present in relativistic outflows around compact astrophysical objects.
The physical picture of interacting magnetic islands provides a useful paradigm for certain plasma dynamics in a variety of physical environments, such as the solar corona, the heliosheath and the Earth's magnetosphere. In this work, we derive an island kinetic equation to describe the evolution of the island distribution function (in area and in flux of islands) subject to a collisional integral designed to account for the role of magnetic reconnection during island mergers. This equation is used to study the inverse transfer of magnetic energy through the coalescence of magnetic islands in two dimensions. We solve our island kinetic equation numerically for three different types of initial distribution: Dirac delta, Gaussian and power-law distributions. The time evolution of several key quantities is found to agree well with our analytical predictions: magnetic energy decays as $\tilde {t}^{-1}$, the number of islands decreases as $\tilde {t}^{-1}$ and the averaged area of islands grows as $\tilde {t}$, where $\tilde {t}$ is the time normalised to the characteristic reconnection time scale of islands. General properties of the distribution function and the magnetic energy spectrum are also studied. Finally, we discuss the underlying connection of our island-merger models to the (self-similar) decay of magnetohydrodynamic turbulence.
Magnetic reconnection, a plasma process converting magnetic energy to particle kinetic energy, is often invoked to explain magnetic energy releases powering high-energy flares in astrophysical sources including pulsar wind nebulae and black hole jets. Reconnection is usually seen as the (essentially two-dimensional) nonlinear evolution of the tearing instability disrupting a thin current sheet. To test how this process operates in three dimensions, we conduct a comprehensive particle-in-cell simulation study comparing two- and three-dimensional evolution of long, thin current sheets in moderately magnetized, collisionless, relativistically hot electron–positron plasma, and find dramatic differences. We first systematically characterize this process in two dimensions, where classic, hierarchical plasmoid-chain reconnection determines energy release, and explore a wide range of initial configurations, guide magnetic field strengths and system sizes. We then show that three-dimensional (3-D) simulations of similar configurations exhibit a diversity of behaviours, including some where energy release is determined by the nonlinear relativistic drift-kink instability. Thus, 3-D current sheet evolution is not always fundamentally classical reconnection with perturbing 3-D effects but, rather, a complex interplay of multiple linear and nonlinear instabilities whose relative importance depends sensitively on the ambient plasma, minor configuration details and even stochastic events. It often yields slower but longer-lasting and ultimately greater magnetic energy release than in two dimensions. Intriguingly, non-thermal particle acceleration is astonishingly robust, depending on the upstream magnetization and guide field, but otherwise yielding similar particle energy spectra in two and three dimensions. Although the variety of underlying current sheet behaviours is interesting, the similarities in overall energy release and particle spectra may be more remarkable.
Alfvén wave collisions are the primary building blocks of the non-relativistic turbulence that permeates the heliosphere and low- to moderate-energy astrophysical systems. However, many astrophysical systems such as gamma-ray bursts, pulsar and magnetar magnetospheres and active galactic nuclei have relativistic flows or energy densities. To better understand these high-energy systems, we derive reduced relativistic magnetohydrodynamics equations and employ them to examine weak Alfvénic turbulence, dominated by three-wave interactions, in reduced relativistic magnetohydrodynamics, including the force-free, infinitely magnetized limit. We compare both numerical and analytical solutions to demonstrate that many of the findings from non-relativistic weak turbulence are retained in relativistic systems. But, an important distinction in the relativistic limit is the inapplicability of a formally incompressible limit, i.e. there exists finite coupling to the compressible fast mode regardless of the strength of the magnetic field. Since fast modes can propagate across field lines, this mechanism provides a route for energy to escape strongly magnetized systems, e.g. magnetar magnetospheres. However, we find that the fast-Alfvén coupling is diminished in the limit of oblique propagation.
Recently, the energization of superthermal electrons at the Earth's bow shock was found to be consistent with a new magnetic pumping model derived in the limit where the electron transit time is much shorter than any time scale governing the evolution of the magnetic fields. The new model breaks with the common approach of integrating the kinetic equations along unperturbed orbits. Rather, the fast transit-time limit allows the electron dynamics to be characterized by adiabatic invariants (action variables) accurately capturing the nonlinear effects of electrons becoming trapped in magnetic perturbations. Without trapping, fast parallel streaming along magnetic field lines causes the electron pressure to be isotropized and homogeneous along the magnetic field lines. In contrast, trapping permits spatially varying pressure anisotropy to form along the magnetic field lines, and through a Fermi process this pressure anisotropy in turn becomes the main ingredient that renders magnetic pumping efficient for energizing superthermal electrons. We here present a detailed mathematical derivation of the model.
Alfvén waves as excited in black hole accretion disks and neutron star magnetospheres are the building blocks of turbulence in relativistic, magnetized plasmas. A large reservoir of magnetic energy is available in these systems, such that the plasma can be heated significantly even in the weak turbulence regime. We perform high-resolution three-dimensional simulations of counter-propagating Alfvén waves, showing that an $E_{B_{\perp }}(k_{\perp }) \propto k_{\perp }^{-2}$ energy spectrum develops as a result of the weak turbulence cascade in relativistic magnetohydrodynamics and its infinitely magnetized (force-free) limit. The plasma turbulence ubiquitously generates current sheets, which act as locations where magnetic energy dissipates. We show that current sheets form as a natural result of nonlinear interactions between counter-propagating Alfvén waves. These current sheets form owing to the compression of elongated eddies, driven by the shear induced by growing higher-order modes, and undergo a thinning process until they break-up into small-scale turbulent structures. We explore the formation of current sheets both in overlapping waves and in localized wave packet collisions. The relativistic interaction of localized Alfvén waves induces both Alfvén waves and fast waves, and efficiently mediates the conversion and dissipation of electromagnetic energy in astrophysical systems. Plasma energization through reconnection in current sheets emerging during the interaction of Alfvén waves can potentially explain X-ray emission in black hole accretion coronae and neutron star magnetospheres.
Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks.
The zeroth law of turbulence states that, for fixed energy input into large-scale motions, the statistical steady state of a turbulent system is independent of microphysical dissipation properties. This behaviour, which is fundamental to nearly all fluid-like systems from industrial processes to galaxies, occurs because nonlinear processes generate smaller and smaller scales in the flow, until the dissipation – no matter how small – can thermalise the energy input. Using direct numerical simulations and theoretical arguments, we show that in strongly magnetised plasma turbulence such as that recently observed by the Parker Solar Probe spacecraft, the zeroth law is routinely violated. Namely, when such turbulence is ‘imbalanced’ – when the large-scale energy input is dominated by Alfvénic perturbations propagating in one direction (the most common situation in space plasmas) – nonlinear conservation laws imply the existence of a ‘barrier’ at scales near the ion gyroradius. This causes energy to build up over time at large scales. The resulting magnetic-energy spectra bear a strong resemblance to those observed in situ, exhibiting a sharp, steep kinetic transition range above and around the ion-Larmor scale, with flattening at yet smaller scales. The effect thus offers a possible solution to the decade-long puzzle of the position and variability of ion-kinetic spectral breaks in plasma turbulence. The existence of the ‘barrier’ also suggests that, how a plasma is forced at large scales (the imbalance) may have a crucial influence on thermodynamic properties such as the ion-to-electron heating ratio.
Between the base of the solar corona at $r=r_\textrm {b}$ and the Alfvén critical point at $r=r_\textrm {A}$, where $r$ is heliocentric distance, the solar-wind density decreases by a factor $ \mathop > \limits_\sim 10^5$, but the plasma temperature varies by a factor of only a few. In this paper, I show that such quasi-isothermal evolution out to $r=r_\textrm {A}$ is a generic property of outflows powered by reflection-driven Alfvén-wave (AW) turbulence, in which outward-propagating AWs partially reflect, and counter-propagating AWs interact to produce a cascade of fluctuation energy to small scales, which leads to turbulent heating. Approximating the sub-Alfvénic region as isothermal, I first present a brief, simplified calculation showing that in a solar or stellar wind powered by AW turbulence with minimal conductive losses, $\dot {M} \simeq P_\textrm {AW}(r_\textrm {b})/v_\textrm {esc}^2$, $U_{\infty } \simeq v_\textrm {esc}$, and $T\simeq m_\textrm {p} v_\textrm {esc}^2/[8 k_\textrm {B} \ln (v_\textrm {esc}/\delta v_\textrm {b})]$, where $\dot {M}$ is the mass outflow rate, $U_{\infty }$ is the asymptotic wind speed, $T$ is the coronal temperature, $v_\textrm {esc}$ is the escape velocity of the Sun, $\delta v_\textrm {b}$ is the fluctuating velocity at $r_\textrm {b}$, $P_\textrm {AW}$ is the power carried by outward-propagating AWs, $k_\textrm {B}$ is the Boltzmann constant, and $m_\textrm {p}$ is the proton mass. I then develop a more detailed model of the transition region, corona, and solar wind that accounts for the heat flux $q_\textrm {b}$ from the coronal base into the transition region and momentum deposition by AWs. I solve analytically for $q_\textrm {b}$ by balancing conductive heating against internal-energy losses from radiation, $p\,\textrm {d} V$ work, and advection within the transition region. The density at $r_\textrm {b}$ is determined by balancing turbulent heating and radiative cooling at $r_\textrm {b}$. I solve the equations of the model analytically in two different parameter regimes. In one of these regimes, the leading-order analytic solution reproduces the results of the aforementioned simplified calculation of $\dot {M}$, $U_\infty$, and $T$. Analytic and numerical solutions to the model equations match a number of observations.
We use three-dimensional (3-D) fully kinetic particle-in-cell simulations to study the occurrence of magnetic reconnection in a simulation of decaying turbulence created by anisotropic counter-propagating low-frequency Alfvén waves consistent with critical-balance theory. We observe the formation of small-scale current-density structures such as current filaments and current sheets as well as the formation of magnetic flux ropes as part of the turbulent cascade. The large magnetic structures present in the simulation domain retain the initial anisotropy while the small-scale structures produced by the turbulent cascade are less anisotropic. To quantify the occurrence of reconnection in our simulation domain, we develop a new set of indicators based on intensity thresholds to identify reconnection events in which both ions and electrons are heated and accelerated in 3-D particle-in-cell simulations. According to the application of these indicators, we identify the occurrence of reconnection events in the simulation domain and analyse one of these events in detail. The event is related to the reconnection of two flux ropes, and the associated ion and electron exhausts exhibit a complex 3-D structure. We study the profiles of plasma and magnetic-field fluctuations recorded along artificial-spacecraft trajectories passing near and through the reconnection region. Our results suggest the presence of particle heating and acceleration related to small-scale reconnection events within magnetic flux ropes produced by the anisotropic Alfvénic turbulent cascade in the solar wind. These events are related to current structures of the order of a few ion inertial lengths in size.
A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfvén-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflection-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms. In particular, we compute the fraction of the AW power at the coronal base ($P_\textrm {AWb}$) that is transferred to solar-wind particles via heating between the coronal base and heliocentric distance $r$, which we denote by $\chi _{H}(r)$, and the fraction that is transferred via work, which we denote by $\chi _{W}(r)$. We find that $\chi _{W}(r_{A})$ ranges from 0.15 to 0.3, where $r_{A}$ is the Alfvén critical point. This value is small compared with one because the Alfvén speed $v_{A}$ exceeds the outflow velocity $U$ at $r < r_{A}$, so the AWs race through the plasma without doing much work. At $r>r_{A}$, where $v_{A} < U$, the AWs are in an approximate sense ‘stuck to the plasma’, which helps them do pressure work as the plasma expands. However, much of the AW power has dissipated by the time the AWs reach $r=r_{A}$, so the total rate at which AWs do work on the plasma at $r>r_{A}$ is a modest fraction of $P_\textrm {AWb}$. We find that heating is more effective than work at $r < r_{A}$, with $\chi _{H}(r_{A})$ ranging from 0.5 to 0.7. The reason that $\chi _{H} \geq 0.5$ in our simulations is that an appreciable fraction of the local AW power dissipates within each Alfvén-speed scale height in RDAWT, and there are a few Alfvén-speed scale heights between the coronal base and $r_{A}$. A given amount of heating produces more magnetic moment in regions of weaker magnetic field. Thus, paradoxically, the average proton magnetic moment increases robustly with increasing $r$ at $r>r_{A}$, even though the total rate at which AW energy is transferred to particles at $r>r_{A}$ is a small fraction of $P_\textrm {AWb}$.
While the front of a fluid shock is a few mean-free-paths thick, the front of a collisionless shock can be orders of magnitude thinner. By bridging between a collisional and a collisionless formalism, we assess the transition between these two regimes. We consider non-relativistic, non-magnetized, planar shocks in electron–ion plasmas. In addition, our treatment of the collisionless regime is restricted to high-Mach-number electrostatic shocks. We find that the transition can be parameterized by the upstream plasma parameter $\varLambda$ which measures the coupling of the upstream medium. For $\varLambda \lesssim 1.12$, the upstream is collisional, i.e. strongly coupled, and the strong shock front is about $\mathcal {M}_1 \lambda _{\mathrm {mfp},1}$ thick, where $\lambda _{\mathrm {mfp},1}$ and $\mathcal {M}_1$ are the upstream mean free path and Mach number, respectively. A transition occurs for $\varLambda \sim 1.12$ beyond which the front is $\sim \mathcal {M}_1\lambda _{\mathrm {mfp},1}\ln \varLambda /\varLambda$ thick for $\varLambda \gtrsim 1.12$. Considering that $\varLambda$ can reach billions in astrophysical settings, this allows an understanding of how the front of a collisionless shock can be orders of magnitude smaller than the mean free path, and how physics transitions continuously between these two extremes.
Type III radio bursts are radio emissions associated with solar flares. They are considered to be caused by electron beams travelling from the solar corona to the solar wind. Magnetic reconnection is a possible accelerator of electron beams in the course of solar flares since it causes unstable distribution functions and density inhomogeneities (cavities). The properties of radio emission by electron beams in an inhomogeneous environment are still poorly understood. We capture the nonlinear kinetic plasma processes of the generation of beam-related radio emissions in inhomogeneous plasmas by utilizing fully kinetic particle-in-cell code numerical simulations. Our model takes into account initial electron velocity distribution functions (EVDFs) as they are supposed to be created by magnetic reconnection. We focus our analysis on low-density regions with strong magnetic fields. The assumed EVDFs allow two distinct mechanisms of radio wave emissions: plasma emission due to wave–wave interactions and so-called electron cyclotron maser emission (ECME) due to direct wave–particle interactions. We investigate the effects of density inhomogeneities on the conversion of free energy from the electron beams into the energy of electrostatic and electromagnetic waves via plasma emission and ECME, as well as the frequency shift of electron resonances caused by perpendicular gradients in the beam EVDFs. Our most important finding is that the number of harmonics of Langmuir waves increases due to the presence of density inhomogeneities. The additional harmonics of Langmuir waves are generated by a coalescence of beam-generated Langmuir waves and their harmonics.
A Hamiltonian two-field gyrofluid model for kinetic Alfvén waves (KAWs) in a magnetized electron–proton plasma, retaining ion finite-Larmor-radius corrections and parallel magnetic field fluctuations, is used to study the inverse cascades that develop when turbulence is randomly driven at sub-ion scales. In the directions perpendicular to the ambient field, the dynamics of the cascade turns out to be non-local and the ratio $\chi _f$ of the wave period to the characteristic nonlinear time at the driving scale affects some of its properties. For example, at small values of $\chi _f$, parametric decay instability of the modes driven by the forcing can develop, enhancing for a while inverse transfers. The balanced state, obtained at early time when the two counter-propagating waves are equally driven, also becomes unstable at small $\chi _f$, leading to an inverse cascade. For $\beta _e$ smaller than a few units, the cascade slows down when reaching the low-dispersion spectral range. For higher $\beta _e$, the ratio of the KAW to the Alfvén frequencies displays a local minimum. At the corresponding transverse wavenumber, a condensate is formed, and the cascade towards larger scales is then inhibited. Depending on the parameters, a parallel inverse cascade can develop, enhancing the elongation of the ion-scale magnetic vortices that generically form.
Magnetic wave perturbations are observed in the solar wind and in the vicinity of Earth's bow shock. For such environments, recent work on magnetic pumping with electrons trapped in the magnetic perturbations has demonstrated the possibility of efficient energization of superthermal electrons. Here we also analyse the energization of such energetic electrons for which the transit time through the system is short compared with time scales associated with the magnetic field evolution. In particular, considering an idealized magnetic configuration we show how trapping/detrapping of energetic magnetized electrons can cause effective parallel velocity ($v_{\parallel }$-) diffusion. This parallel diffusion, combined with naturally occurring mechanisms known to cause pitch angle scattering, such as whistler waves, produces enhanced heating rates for magnetic pumping. We find that at low pitch angle scattering rates, the combined mechanism enhances the heating beyond the predictions of the recent theory for magnetic pumping with trapped electrons.
The first detection of a binary neutron star merger through gravitational waves and photons marked the dawn of multimessenger astronomy with gravitational waves, and it greatly increased our insight in different fields of astrophysics and fundamental physics. However, many open questions on the physical process involved in a compact binary merger still remain and many of these processes concern plasma physics. With the second generation of gravitational wave interferometers approaching their design sensitivity, the new generation under design study and new X-ray detectors under development, the high energy universe will become more and more a unique laboratory for our understanding of plasma in extreme conditions. In this review, we discuss the main electromagnetic signals expected to follow the merger of two compact objects highlighting the main physical processes involved and some of the most important open problems in the field.
Fluid models that approximate kinetic effects have received attention recently in the modelling of large-scale plasmas such as planetary magnetospheres. In three-dimensional reconnection, both reconnection itself and current sheet instabilities need to be represented appropriately. We show that a heat flux closure based on pressure gradients enables a 10-moment fluid model to capture key properties of the lower-hybrid drift instability (LHDI) within a reconnection simulation. Characteristics of the instability are examined with kinetic and fluid continuum models, and its role in the three-dimensional reconnection simulation is analysed. The saturation level of the electromagnetic LHDI is higher than expected, which leads to strong kinking of the current sheet. Therefore, the magnitude of the initial perturbation has significant impact on the resulting turbulence.
Accelerated particles are ubiquitous in the Cosmos and play a fundamental role in many processes governing the evolution of the Universe at all scales, from the sub-AU scale relevant for the formation and evolution of stars and planets to the Mpc scale involved in Galaxy assembly. We reveal the presence of energetic particles in many classes of astrophysical sources thanks to their production of non-thermal radiation, and we detect them directly at the Earth as cosmic rays. In the last two decades both direct and indirect observations have provided us a wealth of new, high-quality data about cosmic rays and their interactions both in sources and during propagation, in the Galaxy and in the Solar System. Some of the new data have confirmed existing theories about particle acceleration and propagation and their interplay with the environment in which they occur. Some others have brought about interesting surprises, whose interpretation is not straightforward within the standard framework and may require a change of paradigm in terms of our ideas about the origin of cosmic rays of different species or in different energy ranges. In this article, we focus on cosmic rays of galactic origin, namely with energies below a few petaelectronvolts, where a steepening is observed in the spectrum of energetic particles detected at the Earth. We review the recent observational findings and the current status of the theory about the origin and propagation of galactic cosmic rays.
We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.
Protoplanetary discs are made of gas and dust orbiting a young star. They are also the birth place of planetary systems, which motivates a large amount of observational and theoretical research. In these lecture notes, I present a review of the magnetic mechanisms applied to the outer regions ($R\gtrsim 1\ \mathrm {AU}$) of these discs, which are the planet-formation regions. In contrast to usual astrophysical plasmas, the gas in these regions is noticeably cold ($T < 300\ \mathrm {K}$) and dense, which implies a very low ionisation fraction close to the disc midplane. In these notes, I deliberately ignore the innermost $(R\sim 0.1\ \mathrm {AU})$ region, which is influenced by the star–disc interaction and various radiative effects. I start by presenting a short overview of the observational evidence for the dynamics of these objects. I then introduce the methods and approximations used to model these plasmas, including non-ideal magnetohydrodynamics, and the uncertainties associated with this approach. In this framework, I explain how the global dynamics of these discs is modelled, and I present a stability analysis of this plasma in the local approximation, introducing the non-ideal magneto-rotational instability. Following this mostly analytical part, I discuss numerical models that have been used to describe the saturation mechanisms of this instability, and the formation of large-scale structures by various saturation mechanisms. Finally, I show that local numerical models are insufficient because magnetised winds are also emitted from the surface of these objects. After a short introduction on wind physics, I present global models of protoplanetary discs, including both a large-scale wind and the non-ideal dynamics of the disc.