Hostname: page-component-68945f75b7-wph62 Total loading time: 0 Render date: 2024-08-05T23:33:15.915Z Has data issue: false hasContentIssue false

Well-preserved fungal spores from Jurassic rocks of Hells Canyon on the Idaho–Oregon border

Published online by Cambridge University Press:  20 May 2016

Alfred Traverse
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park 16802
Sidney R. Ash
Affiliation:
Department of Geology, Weber State University, Ogden, Utah 84408

Abstract

Palynoflorules containing sparse but regularly occurring chitinous-walled fungal, probably ascomycete, spores have been obtained from silty limestone nodules in the Jurassic Coon Hollow Formation in the Wallowa terrane in Hells Canyon, Idaho. The fungal spores are associated with moderately abundant embryophytic spores and pollen that suggest late Early Jurassic to early Middle Jurassic age, which agrees with dating provided by marine animals stratigraphically just above. The fungal spores constitute the most diverse such assemblage of robust-walled spores described from pre-Cretaceous rocks. Two new species of the fossil fungal spore form-genus Diporicellaesporites, D. idahoensis and D. serratulus, and one new species of form-genus Fractisporonites, F. pittsburgensis, are described.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ash, S. R. 1991a. A new Jurassic flora from the Wallowa terrane in Hells Canyon, Oregon and Idaho. Oregon Geology, 53:2734.Google Scholar
Ash, S. R. 1991b. A new Jurassic Phlebopteris (Plantae, Filicales) from the Wallowa terrane in the Snake River Canyon, Oregon and Idaho. Journal of Paleontology, 65:322329.Google Scholar
Ash, S. R., Litwin, R. J., and Traverse, A. 1982. The Upper Triassic fern Phlebopteris smithii (Daugherty) Arnold and its spores. Palynology, 6:203219.Google Scholar
British Micropalaeontology Society Palynology Group. 1984. Pollen and spore biostratigraphy of the Phanerozoic in North-West Europe. University of Cambridge, Department of Earth Sciences, 30 p.Google Scholar
Creber, G. T., and Ash, S. R. 1990. Evidence of widespread fungal attack on Upper Triassic trees in the southwestern U.S.A. Review of Paleobotany and Palynology, 63:189195.Google Scholar
Dennis, R. L. 1976. Palaeosclerotium, a Pennsylvanian age fungus combining features of modern ascomycetes and basidiomycetes. Science, 192:6668.Google Scholar
Lund, K., and Snee, L. W. 1988. 11. Metamorphism, structural development, and age of the continent–island arc juncture in west-central Idaho, p. 296331. In Ernst, W. G. (ed.), Rubey Colloquium Volume VII. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
Pirozynski, K. A., and Malloch, D. W. 1975. The origin of land plants: a matter of mycotrophism, p. 153164. In Schwartz, A. W. (ed.), Bio Systems 6. North-Holland, Amsterdam, Netherlands.Google Scholar
Sherwood-Pike, M. A., and Gray, J. 1985. Silurian fungal remains: probable records of the Class Ascomycetes. Lethaia, 18:120.Google Scholar
Srivastava, S. K. 1968. Fungal elements from the Edmonton Formation (Maestrichtian), Alberta, Canada. Canadian Journal of Botany, 46:11151118.Google Scholar
Stanley, G. D. Jr., and Beauvais, L. 1990. Middle Jurassic corals from the Wallowa terrane, west-central Idaho. Journal of Paleontology, 64:352362.Google Scholar
Stubblefield, S. P., and Banks, H. P. 1983. Fungal remains in the Devonian trimerophyte Psilophyton dawsonii. American Journal of Botany, 70:12581261.Google Scholar
Stubblefield, S. P., Taylor, T. N., Miller, C. E., and Cole, G. T. 1983. Studies of Carboniferous fungi. II. The structure and organization of Mycocarpon, Sporocarpon, Dubiocarpon and Coleocarpon (Ascomycetina). American Journal of Botany, 70:14821498.Google Scholar
Thusu, B., and Vigran, J. O. 1985. Middle–Late Jurassic (Late Bathonian–Tithonian) palynomorphs. Journal of Micropalaeontology, 4:113120.Google Scholar
Tiffney, B. H., and Barghoorn, E. S. 1974. The fossil record of the Fungi. Occasional Papers of the Farlow Herbarium, Harvard University 7, 42 p.CrossRefGoogle Scholar
Traverse, A. 1972. A case of marginal palynology: a study of the Franciscan melanges. Geoscience and Man, 4:8790.Google Scholar
Traverse, A. 1988. Paleopalynology. Unwin Hyman, London, 600 p.Google Scholar
Vagvolgyi, A., and Hills, L. V. 1969. Microflora of the Lower Cretaceous McMurray Formation, northeast Alberta. Bulletin of Canadian Petroleum Geology, 17:155181.Google Scholar
Vallier, T. L., and Engebretson, D. C. 1984. 63. The Blue Mountains island arc of Oregon, Idaho, and Washington: an allochthonous coherent terrane from the ancestral western Pacific Ocean?, p. 197199. In Howell, D. G. et al. (eds.), Proceedings of the Circum-Pacific Terrane Conference. Stanford University Publications, Geological Sciences 18.Google Scholar
Visscher, H. 1988. A dramatic floral event at the Permian–Triassic junction. 7th International Palynological Congress, Brisbane, Australia, Abstracts:174.Google Scholar
Visscher, H., and Brugman, W. A. 1986. The Permian–Triassic boundary in the southern Alps: a palynological approach. Memorie della Societa Geologica Italiana, 34:121128.Google Scholar
White, J. F. Jr., and Taylor, T. N. 1991. Fungal sporocarps from Triassic peat deposits in Antarctica. Review of Paleobotany and Palynology, 67:229236.Google Scholar
Wilson, L. R. 1962. A Permian fungus spore type from the Flowerpot Formation of Oklahoma. Oklahoma Geology Notes, 22:9196.Google Scholar