Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T02:33:06.947Z Has data issue: false hasContentIssue false

Trace fossils from nearshore to offshore environments: Lower Devonian of Bolivia

Published online by Cambridge University Press:  14 July 2015

Christian Gaillard
Affiliation:
UMR CNRS 5125, Paléoenvironnements et Paléobiosphère, Université Claude Bernard, Lyon 1, UFR des Sciences de la Terre, Domaine scientifique de La Doua, Géode-2, rue Raphaël Dubois F-69622 Villeurbanne Cedex, France,
Patrick R. Racheboeuf
Affiliation:
UMR CNRS 6538, Domaines Océaniques, Université de Bretagne Occidentale, Brest, UFR des Sciences et Techniques, 6, avenue Le Gorgeu, C.S. 93837, F-29238 Brest Cedex 3, France,

Abstract

Abundant and diverse trace fossils occur in deposits, recording an Early Devonian transgression in Bolivia. the very well-exposed Presto-El Peral section is located in the Interandean Belt 50 km northeast of Sucre. Trace fossils can be assigned to five associations from nearshore to offshore environments (namely Skolithos, Diplocraterion, Altichnus, Palaeophycus, and Zoophycos associations). They clearly illustrate the different colonization phases of the benthos with increasing marine influence. A deeper-water Helminthopsis association occurs in other complementary sections on the Eastern Cordillera. Variation of bioturbation intensity, ichnodiversity, and preservation potential is evaluated. the morphology of traces, mainly deep burrows, shows a significant gradient related to the behavior of tracemakers and the environmental changes. Main trends are consistent with the Seilacherian bathymetric model which is detailed here and/or emended with a well-exposed field example. A precise correlation is proposed with fossil benthic associations dominated by brachiopods. the whole gives an accurate model for benthos colonization and benthic marine zonation.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlfeld, F., and Branísa, L. 1960. Geología de Bolivia. Instituto Boliviano del Petroleo, La Paz, 245 p.Google Scholar
Bandel, K., and Quinzio-Sinn, L. A. 1999. Paleozoic trace fossil from the Cordillera Costal near Concepcion, connected to a review of the Paleozoic history of central Chile. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 211:171200.Google Scholar
Bjerstedt, T. W. 1988. Trace fossils from the Early Mississipian Price Delta, southeast-west Virginia. Journal of Paleontology, 62:506519.Google Scholar
Bornemann, J. G. 1889. Über den Buntsandstein in Deutschland und seine Bedeutung für die Trias. Beiträge Geologie, Paläontologie, 1, 61 p.Google Scholar
Bottjer, D. J., Droser, M. L., and Jablonski, D. 1988. Paleoenvironmental trends in the history of trace fossils. Nature, 333:252255.CrossRefGoogle Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls: Developments in Palaeontology and Stratigraphy, 1. Elsevier, 427 p.Google Scholar
Boucot, A. J., and Gill, E. D. 1956. Australocoelia, a new Lower Devonian brachiopod from South Africa, South America, and Australia. Journal of Paleontology, 30:11731178.Google Scholar
Brady, L. F. 1949. Oniscoidichnus, new name for Isopodichnus Brady 1947 not Borneman 1889. Journal of Paleontology, 23:573.Google Scholar
Branísa, L. 1965. Los Fósiles Guías de Bolivia. I. Paleozoico. Boletín del Servicio Geológico de Bolivia, La Paz, 6, 282 p.Google Scholar
Bromley, R. G. 1991. Zoophycos: Strip mine, refuse dump, cache or sewage farm? Lethaia, 24:460462.Google Scholar
Bromley, R. G. 1996. Trace Fossils, Biology and Taphonomy. Chapman & Hall, London, 361 p.Google Scholar
Bromley, R. G., and Asgaard, U. 1979. Triassic freshwater ichnocoenoses from Carlsberg fjord, east Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:3980.CrossRefGoogle Scholar
Bromley, R. G., and Hanken, N.-M. 1991. The growth vector in trace fossils: Examples from the Lower Cambrian of Norway. Ichnos, 1:261276.CrossRefGoogle Scholar
Buatois, L. A., Mángano, M. G., Maples, C. G., and Lanier, W. P. 1997. The paradox of nonmarine ichnofaunas in tidal rhythmites: Integrating sedimentologic and ichnologic data from the Late Carboniferous of eastern Kansas, USA. Palaios, 12:467481.CrossRefGoogle Scholar
Caster, K. E. 1939. A Devonian fauna from Colombia. Bulletins of American Paleontology, 24, 218 p.Google Scholar
Clarke, J. M. 1899. The Paleozoic faunas of Parà, Brazil. Archivos do Museu Nacional do Rio de Janeiro, 10:49174.Google Scholar
Clarke, J. M. 1913. Fosseis Devonianos do Parana. Monographias do Serviço Geologico e Mineralogico do Brasil, I, 353 p.Google Scholar
Conrad, T. A. 1841. On the Palaeontology of the State of New York. New York State Geological Survey, 5th Annual Report, p. 2527.Google Scholar
Crimes, T. P. 1970. The significance of trace fossils in sedimentology, stratigraphy and palaeoecology with examples from lower Paleozoic strata, p. 101126. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal, special issue, 3.Google Scholar
Crimes, T. P., and Harper, J. C. 1970. Trace Fossils. Geological Journal, special issue, 3.Google Scholar
Crimes, T. P., and Harper, J. C. 1977. Trace Fossils 2. Geological Journal, special issue, 9.Google Scholar
Curran, H. A. 1985. Biogenic structures: Their use in interpreting depositional environments. Society of Economic Paleontologists and Mineralogists, special issue, 35.Google Scholar
Dawson, J. W. 1873. Impressions and footprints of aquatic animals and imitative markings on Carboniferous rocks. American Journal of Science, ser. 3, 5:1624.CrossRefGoogle Scholar
de Gibert, J. M., and Ekdale, A. A. 2002. Ichnology of a restricted epicontinental sea, Arapien Shale, Middle Jurassic, Utah, USA. Palaeogeography, Palaeoecology, Palaeoclimatology, 183:275286.Google Scholar
De Melo, J. H. G. 1988. The Malvinokaffric Realm in the Devonian of Brazil, p. 669703. In McMillan, N. J., Embry, A. F., and Glass, D. J. (eds.), Devonian of the World. 1: Regional Syntheses. Canadian Society of Petroleum Geologists Memoir, 14.Google Scholar
D'Orbigny, A. 1842. Voyage Dans l'Amérique Méridionale. Pitois-Levrault, Paris, 188 p.Google Scholar
Draganits, E., Braddy, S. J., and Briggs, D. E. G. 2001. A Gondwanan coastal arthropod ichnofauna from the Muth Formation (Lower Devonian, Northern India): Paleoenvironment and tracemaker behavior. Palaios, 16:126147.Google Scholar
Droser, M. L. 1991. Ichnofabric of the Paleozoic Skolithos ichnofacies and the nature and distribution of Skolithos piperock. Palaios, 6:316325.Google Scholar
Droser, M. L., and Bottjer, D. J. 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology, 56:558560.Google Scholar
Droser, M. L., and Bottjer, D. J. 1989. Ichnofabric of sandstones deposited in high-energy nearshore environments: Measurement and utilization. Palaios, 4:598604.Google Scholar
Ekdale, A. A. 1977. Abyssal trace fossils in worldwide Deep Sea Drilling Project cores. Trace Fossils 2. Geological Journal, special issue, 9:163182.Google Scholar
Ekdale, A. A. 1978. Trace fossils in leg 42 A cores. Initial Reports of the Deep Sea Drilling Project, XLII, 1, 39:821827.Google Scholar
Ekdale, A. A. 1985. Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology, 50:6381.Google Scholar
Ekdale, A. A. 1988. Pitfalls of paleobathymetric interpretations based on trace fossil assemblages. Palaios, 3:464472.Google Scholar
Ekdale, A. A., and Bromley, R. G. 2001. A day and night in the life of a cleft-foot clam: Protovirgularia–Lockeia–Lophoctenium . Lethaia, 34:119124.Google Scholar
Ekdale, A. A., Bromley, R. G., and Pemberton, S. G. 1984. Ichnology, the use of trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists Short Course, 15, 317 p.Google Scholar
Eldredge, N., and Branísa, L. 1980. Calmoniid trilobites of the Lower Devonian Scaphiocoelia zone of Bolivia, with remarks on related species. Bulletin of the American Museum of Natural History, 165:181290.Google Scholar
Emmons, E. 1844. The Taconic System Based on Observations in New York, Massachussetts, Maine, Vermont, and Rhode Island. Caroll & Cook, Albany, 68 p.Google Scholar
Fenton, C. L., and Fenton, M. A. 1937. Belt Series of the North: Stratigraphy, sedimentation, paleontology. Geological Society of America Bulletin, 48:18731970.Google Scholar
Fillion, D., and Pickerill, R. K. 1990. Ichnology of the Upper Cambrian to Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland Canada. Palaeontographica Canadiana, 7:1119.Google Scholar
Fischer-Ooster, C. von. 1858. Die fossilen Fucoiden der Schweizer Alpen, Nebst Erörterungen über Deren Geologisches Alter. Huber, Bern, 72 p.Google Scholar
Frey, R. W. 1990. Trace fossils and hummocky cross-stratification, Upper Cretaceous of Utah. Palaios, 5:203218.Google Scholar
Frey, R. W., and Pemberton, S. G. 1985. Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bulletin of Canadian Petroleum Geology, 33:72115.Google Scholar
Frey, R. W., Pemberton, S. G., and Saunders, T. D. A. 1990. Ichnofacies and bathymetry: A passive relationship. Journal of Paleontology, 64:155158.Google Scholar
Fürsich, F. T. 1974. On Diplocraterion Torell 1870 and the significance of morphological features in vertical, spreiten-bearing, U-shaped trace fossils. Journal of Paleontology, 48:952962.Google Scholar
Fürsich, F. T. 1998. Environmental distribution of trace fossils in the Jurassic of Kachchh. Facies, 39:243272.Google Scholar
Gaillard, C., and Olivero, D. 1993. Interprétation paléoécologique nouvelle de Zoophycos Massalongo, 1855. Compte Rendus de l'Académie des Sciences, Paris, ser. II, 316:823830.Google Scholar
Gaillard, C., Hennebert, M., and Olivero, D. 1999. Palaeoenvironmental significance of the trace fossil Zoophycos in the Upper Tournaisian Limestone of Tournai (Lower Carboniferous, Belgium). Geobios, 32:513524.CrossRefGoogle Scholar
Gaillard, C., Racheboeuf, P. R., Paris, F., and Dalenz-Farjat, A. 2002. Modelling marine colonization: The Lower Devonian interandean belt example. 3rd European Meeting on the Palaeontology and Stratigraphy of Latin America (EMPSLA), Toulouse, extended abstract, p. 4851.Google Scholar
Gall, J. C., Bernier, P., Gaillard, C., Barale, G., Bourseau, J. P., Buffetaut, E., and Wenz, S. 1985. Influence du développement d'un voile algaire sur la sédimentation et la taphonomie des calcaires lithographiques. Exemple du gisement de Cerin (Kimméridgien supérieur, Jura méridional français). Compte Rendus de l'Académie des Sciences, Paris, ser. II, 301:547552.Google Scholar
Gerdes, G., Klenke, T., and Noffke, N. 2000. Microbial signature in peritidal siliciclastic sediments: A catalogue. Sedimentology, 47:279308.CrossRefGoogle Scholar
Gerdes, G., Claes, M., Dunajtschik-Piewak, K., Riege, H., Krumbein, W. E., and Reineck, H. E. 1993. Contribution of microbial mats to sedimentary surface structures. Facies, 29:6174.Google Scholar
Gevers, T. W., Frakes, L. A., Edwards, L. N., and Marzolf, J. E. 1971. Trace fossils in the Lower Beacon sediments (Devonian), Darwin Mountains, southern Victoria land, Antarctica. Journal of Paleontology, 45:8194.Google Scholar
Gilmore, C. W. 1926. Fossil footprints from the Grand Canyon. Smithsonian Miscellaneous Collections, 77:141.Google Scholar
Goldring, R., and Langenstrassen, F. 1979. Open shelf and nearshore clastic facies in the Devonian. Special Papers in Palaeontology, The Palaeontological Association, 23:8197.Google Scholar
Goodwin, P. W., and Anderson, E. J. 1974. Associated physical and biogenic structures in environmental subdivision of a Cambrian tidal sand body. Journal of Geology, 82:779794.Google Scholar
Gordon, E. A. 1988. Body and trace fossils from the Middle-Upper Devonian Catskill magnafacies, southeastern New York, USA, p. 139156. In McMillan, N. J., Embry, A. F., and Glass, D. J. (eds.), The Devonian of the World. Canadian Society of Petrology and Geology Memoir, 14.Google Scholar
Hakes, W. G. 1976. Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, Northeast Kansas. University of Kansas Paleontological Contributions, 63:146.Google Scholar
Hakes, W. G. 1977. Trace fossils in Late Pennsylvanian cyclothems, Kansas, p. 209226. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal, special issue, 9.Google Scholar
Haldemann, S. S. 1840. Supplement to number one of “A monograph of the Limniades, and other fresh-water univalve shells of North America.” Philadelphia, 3 p.Google Scholar
Hall, J. 1847. Palaeontology of New York, 1. Albany, 338 p.Google Scholar
Hall, J. 1852. Palaeontology of New York, 2. Albany, 362 p.Google Scholar
Hall, J. 1863. Observations upon some spiralgrowing fucoidal remains of the Paleozoic rocks of New York. New York State Cabinet, 16th Annual Report, p. 7683.Google Scholar
Hallam, A. 1975. Preservation of trace fossils, p. 5563. In Frey, R. W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.Google Scholar
Han, Y., and Pickerill, R. K. 1994. Taxonomic reassessment of Protovirgularia M'Coy 1850 with new examples from the Paleozoic of New Brunswick, eastern Canada. Ichnos, 3:203–22.Google Scholar
Han, Y., and Pickerill, R. K. 1995. Taxonomic review of the ichnogenus Helminthopsis Heer 1877 with a statistical analysis of selected ichnospecies. Ichnos, 4:83118.Google Scholar
Häntzschel, W. 1975. Trace fossils and problematica, p. W1W269. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology. Pt. W. Miscellana, supplement 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Havlicek, V. 1965. Superfamily Orthotetacea (Brachiopoda) in the Bohemian and Moravian Palaeozoic. Vestník Ústredniho ústavu geologického, 40:291294.Google Scholar
Heer, O. 1877. Flora Fossilis Helvetiae. Die Vorweltliche Flora der Schweiz. Würster, Zürich, 182 p.Google Scholar
Heinberg, C., and Birkelund, T. 1984. Trace-fossil assemblages and basin evolution of the Vardekloft Formation (Middle Jurassic, Central East Greenland). Journal of Paleontology, 58:362397.Google Scholar
Hobday, D. K., and Tavener-Smith, R. 1975. Trace fossils in the Ecca of northern Natal and their palaeoenvironmental significance. Palaeontologia Africana, 18:4752.Google Scholar
Isaacson, P. E. 1977a. Devonian stratigraphy and brachiopod paleontology of Bolivia, Pt. A, Orthida and Strophomenida. Palaeontographica A, 155:133192.Google Scholar
Isaacson, P. E. 1977b. Devonian stratigraphy and brachiopod paleontology of Bolivia, Pt. B, Spiriferida and Terebratulida. Palaeontographica A, 156:168217.Google Scholar
Isaacson, P. E. 1993. Devonian Brachiopoda of Bolivia, p. 533. In Suárez-Soruco, R. (ed.), Fosiles y facies de Bolivia, II, Invertebrados y Paleobotanica. Revista Técnica de Yacimientos Petrolíferos Fiscales Bolivianos, 13–14.Google Scholar
James, U. P. 1879. Description of new species of fossils and remarks on some others, from the Lower and Upper Silurian rocks of Ohio. The Paleontologist, 3:1724.Google Scholar
Linck, O. 1949. Lebens-Spuren aus dem Schilfsandstein (Mittl. Keuper km 2) NW-Würtembergs und ihre Bedeutung für die Bildungsgeschichte der Stufe. Verein Vaterländisch Naturkunde Würtemberg, Jahresh, 97/101:1100.Google Scholar
Linnaeus, C. 1758. Systema Naturae, tenth edition.Google Scholar
MacLeay, W. S. 1839. Note on the Annelida, p. 699701. In Murchison, R. I. (ed.), The Silurian System, Pt. II. J. Murray, London.Google Scholar
Mángano, M. G., and Buatois, L. A. 1999. Ichnofacies models in early Paleozoic tide-dominated quartzites: Onshore-offshore gradients and the classic Seilacherian paradigm. Ata Universitatis Carolinae, Geologica, 43:151154.Google Scholar
Mángano, M. G., Buatois, L. A., and Acenolaza, G. F. 1996. Trace fossils and sedimentary facies from a Late Cambrian–early Ordovician tide-dominated shelf (Santa Rosita Formation, northwest Argentina): Implications for ichnofacies models of shallow marine successions. Ichnos, 5:5388.Google Scholar
Mángano, M. G., Buatois, L. A., and Rindsberg, A. K. 2002. Carboniferous Psammichnites: Systematic re-evaluation, taphonomy and autecology. Ichnos, 9:122.CrossRefGoogle Scholar
Mángano, M. G., Buatois, L. A., West, R. R., and Maples, C. G. 1998. Contrasting behavioral and feeding strategies recorded by tidal-flat bivalve trace fossils from the Upper Carboniferous of eastern Kansas. Palaios, 13:335351.Google Scholar
Massalongo, A. 1855. Zoophycos, Novum Genus Plantarum Fossilium. Monographia, Typis Antonellianis, Veronae, p. 4552.Google Scholar
McCarthy, B. 1979. Trace fossils from a Permian shoreface-foreshore environment, eastern Australia. Journal of Paleontology, 53:345366.Google Scholar
McCoy, F. 1850. On some genera and species of Silurian Radiata in the collection of the University of Cambridge. Annales of the Magazine of Natural History, ser. 2, 6:270290.Google Scholar
Miller, M. F., Ekdale, A. A., and Picard, M. D. (eds.). 1984. Trace fossils and paleoenvironments: Marine carbonate, marginal marine terrigenous and continental terrigenous settings. Journal of Paleontology, 58:283598.Google Scholar
Miller, S. A., and Dyer, C. B. 1878. Contribution to paleontology, n°1. Journal of Cincinnati Society of Natural History, 1:2439.Google Scholar
Nicholson, H. A. 1873. Contributions to the study of the errant annelides of the older Paleozoic rocks. Proceedings of the Royal Society of London, 21:288290.Google Scholar
Noffke, N., Gerdes, G., Klenke, T., and Krumbein, W. E. 2001. Microbially induced sedimentary structures—A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71:649656.Google Scholar
Olivero, D., and Gaillard, C. 1996. Paleoecology of Jurassic Zoophycos from south-eastern France. Ichnos, 4:249260.Google Scholar
Osgood, R. G. Jr. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana, 6:376377.Google Scholar
Pemberton, S. G., and Frey, R. W. 1992. Trace fossil facies models: Environmental and allostratigraphic significance, p. 4772. In Walker, R. G. and James, N. P. (eds.), Facies Models, Response to Sea Level Change. Geological Association of Canada, Memorial University of Newfoundland, St. John's.Google Scholar
Pemberton, S. G., Frey, R. W., and Saunders, T. D. A. 1990. Trace fossils, p. 355362. In Briggs, D. E. G. and Crowther, P. R. (eds.), Palaeobiology, A Synthesis. Blackwell, Oxford.Google Scholar
Pemberton, S. G., van Wagoner, J. C., and Wach, G. D. 1992. Ichnofacies of a wave-dominated shoreline, p. 339382. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration—A Core Workshop. SEPM, Core Workshop, 17.Google Scholar
Pickerill, R. K. 1992. Carboniferous nonmarine invertebrate ichnocoenoses from southern New Brunswick, eastern Canada. Ichnos, 2:2135.Google Scholar
Pickerill, R. K., and Peel, J. S. 1990. Trace fossils from the Lower Cambrian Bastion Formation of the North-East Greenland. Grønlands Geologiske Undersøgelse, 147:543.Google Scholar
Pollard, J. E., and Walker, E. F. 1984. Reassessment of sediments and trace fossils from Old Red Sandstone (Lower Devonian) of Dunure, Scotland, described by John Smith (1909). Geobios, 17:567576.Google Scholar
Racheboeuf, P. R., Le Herisse, A., Paris, F., Babin, C., Guillocheau, F., Truyols-Massoni, M., and Suárez-Soruco, R. 1993. Le Dévonien de Bolivie: Biostratigraphie et chronostratigraphie. Comptes Rendus de l'Académie des Sciences, Paris, ser. II, 317:795802.Google Scholar
Racheboeuf, P. R., Le Herisse, A., Paris, F., Babin, C., Guillocheau, F., Truyols-Massoni, M., and Suárez-Soruco, R. 1994. El Dévonico de Bolivia: Bio y cronoestratigrafía. Bulletin de l'Institut Français d'Etudes Andines, 22:645655.Google Scholar
Rhoads, D. E. 1975. The paleoecological and environmental significance of trace fossils, p. 147160. In Frey, R.W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Richter, R. 1850. Aus der thüringischen Grauwacke. Zeitschrift Deutsche Geologische Gesellschaft, 2:198206.Google Scholar
Sablock, P. E., and Isaacson, P. E. 1993. Bolivian Devonian brachiopod communities, p. 3552. In Suárez-Soruco, R. (ed.), Fosiles y facies de Bolivia, II, Invertebrados y Paleobotanica. Revista Técnica de Yacimientos Petrolíferos Fiscales Bolivianos, 13–14.Google Scholar
Sadler, C. J. 1993. Arthropod trace fossils from the Permian De Chelly Sandstone, northeastern Arizona. Journal of Paleontology, 67:240249.Google Scholar
Schindewolf, O. 1928. Studien aus dem Marburger Buntsandstein. IV. Isopodichnus problematicus (Schidwf) im Unteren und Mittleren Buntsandstein. Senckenbergiana, 10:2737.Google Scholar
Schlirf, M. 2000. Upper Jurassic trace fossils from the Boulonnais (northern France). Geologica et Palaeontologica, 34:145213.Google Scholar
Seilacher, A. 1953a. Studien zur Palichnologie I. Über die Methoden der Palichnologie. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 96:421451.Google Scholar
Seilacher, A. 1953b. Studien zur Palichnologie II. Die fossilen Ruhespuren (Cubichnia). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 98:87124.Google Scholar
Seilacher, A. 1955. Spuren und Fazies im Unterkambrium, p. 373399. In Schindewolf, O. H. and Seilacher, A. (eds.), Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akademie der Wissenschaften und der Literatur, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Jahrgang 1955, 10.Google Scholar
Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology, 5:413428.Google Scholar
Seilacher, A. 1970. Cruziana stratigraphy of “nonfossiliferous” Paleozoic sandstones, p. 447476. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal, special issue, 3.Google Scholar
Seilacher, A., and Seilacher, E. 1994. Bivalvian trace fossils: A lesson from actuopaleontology. Courier Forschungsinstitut Senckenberg, 169:515.Google Scholar
Seilacher, A., Reif, W.-E., and Westphal, F. 1985. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London, series B, 311:523.Google Scholar
Suárez-Soruco, R. 2000. Geological compendium of Bolivia. Revista Técnica de Yacimientos Petrolíferos Fiscales Bolivianos, 18:1144.Google Scholar
Suárez-Soruco, R., and Díaz Martinez, E. 1996. Léxico estratigráfico de Bolivia. Revista Técnica de Yacimientos Petrolíferos Fiscales Bolivianos, 17:1227.Google Scholar
Torell, O. M. 1870. Petrificata Suecana Formationis Cambricae. Lunds Universitets Arsskrift, 6:114.Google Scholar
Trewin, N. H. 1976. Isopodichnus in a trace fossil assemblage from the Old Red Sandstone. Lethaia, 9:2937.Google Scholar
Uchman, A. 1998. Taxonomy and ethology of flysch trace fossils: Revision of the Marian Ksiazkiewicz collection and studies of complementary material. Annales Societatis Geologorum Poloniae, 68:6174.Google Scholar
Von Sternberg, K. M. G. 1833. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt. Fleischer, Leipzig, 5–6:180.Google Scholar
Vossler, S. M., and Pemberton, S. G. 1988. Skolithos in the Upper Cretaceous Cardium Formation: An ichnofossil example of opportunistic ecology. Lethaia, 21:351362.Google Scholar
Walker, E. F. 1985. Arthropod ichnofauna of the Old Red Sandstone at Dunure and Montrose, Scotland. Transactions of the Royal Society of Edinburgh (Earth Sciences), 76:287297.Google Scholar
Webby, B. D. 1970. Late Precambrian trace fossil from New South Wales. Lethaia, 3:79109.Google Scholar
Wetzel, A. 1991. Ecologic interpretation of deep-sea trace fossil communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 85:4769.Google Scholar
Wetzel, A. 2002. Modern Nereites in the South China Sea—ecological association with redox conditions in the sediment. Palaios, 17:507515.Google Scholar
Wetzel, A., and Bromley, R. G. 1994. Phycosiphon incertum revisited: Anconichnus horizontalis is its junior subjective synonym. Journal of Paleontology, 68:13961402.Google Scholar
Wetzel, A., and Bromley, R. G. 1996. Re-evaluation of the ichnogenus Helminthopsis—A new look at the type material. Palaeontology, 39:119.Google Scholar
Wetzel, A., and Uchman, A. 2001. Sequential colonization of muddy turbidites in the Eocene Beloveža Formation, Carpathians, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 168:171186.Google Scholar
Wetzel, A., and Werner, F. 1981. Morphology and ecological significance of Zoophycos in deepsea sediments of NW Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 32:185212.Google Scholar
Whitfield, R. P. 1890. Notes on some fossils from Bolivia collected by Mr Arthur F. Wendt, and description of a remarkable new genus and species of brachiopod. American Institute of Mining Engineers Transactions, 19:104107.Google Scholar