Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T03:17:36.140Z Has data issue: false hasContentIssue false

Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: the marine biosphere on the eve of metazoan radiation

Published online by Cambridge University Press:  11 August 2017

Vladimir N. Sergeev
Affiliation:
Geological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017, Russia sergeev-micro@rambler.ru
J. William Schopf
Affiliation:
Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics (Center for the Study of Evolution and the Origin of Life), and Molecular Biology Institute, University of California, Los Angeles 90095 USA, and PennState Astrobiology Research Center, 435 Deike Building, University Park, PA 16802 USA schopf@ess.ucla.edu

Abstract

Carbonaceous bedded cherts of the late Neoproterozoic (Cryogenian) ∼800 to 750 Ma old Chichkan Formation of South Kazakhstan contain an abundant, diverse assemblage of exquisitely preserved microorganisms. Like many Proterozoic microbiotas, the Chichkan assemblage is dominated by prokaryotic cyanobacteria, both filamentous (oscillatorialeans and nostocaleans, represented primarily by cellular trichomes and empty sheaths) and coccoidal (chroococcaleans and pleurocapsaleans, including solitary, colonial, and stalk-forming specimens). However, unlike Proterozoic microbiotas reported from peritidal settings, the Chichkan fossils, permineralized in cherts deposited in the open shelf facies of the formation, include diverse microscopic eukaryotes: vase-shaped testate amoebae, spiny (acanthomorphic) phytoplanktonic unicells, large (up to ∼1 mm diameter) megasphaeromorphic acritarchs, and sausage-shaped vaucheriacean green alga-like filaments.

Given the composition of this biota and the presence in it and similarly aged assemblages of numerous taxa typical of late Neoproterozoic deposits (e.g., Cerebrosphaera, Jacutianema, Melanocyrillium, Stictosphaeridium, Trachyhystrichosphaera, and Vandalosphaeridium), the Chichkan Lagerstätte appears representative of the Cryogenian biota as now known, thereby documenting the status of the marine biosphere at a time closely preceding the radiation of the Metazoa. As such, we interpret this and other coeval mixed assemblages of prokaryotic and eukaryotic microfossils as representing an evolutionary stage transitional between the predominantly prokaryote-dominated Precambrian and the eukaryote-dominated Phanerozoic biospheres.

As reported here, the Chichkan assemblage is composed of 39 taxa (of which two forms are described informally) that are assigned to 23 genera of microscopic prokaryotes and eukaryotes and that include two new species: Polybessurus crassus n. sp. and Vandalosphaeridium koksuicum n. sp.

Type
Research Article
Copyright
Copyright © 2010, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmedzhanov, M. A., Baratov, R. B., and Bakirev, A. B. 1982. Precambrian of Middle Asia. Nauka, Leningrad, 264 p. (In Russian)Google Scholar
Allison, C. W. and Awramik, S. M. 1989. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada. Precambrian Research, 43: 253294.Google Scholar
Ankinovich, S. G. 1961. Lower Paleozoic of northern Tian-Shan and western margin of Central Kazakhstan vanadium bearing basin, Part I. AN Kazakhskoi SSR, Alma-Ata, 272 p. (In Russian)Google Scholar
Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E., and Corsetti, F. A. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445: 198201.CrossRefGoogle ScholarPubMed
Bezrukov, P. L. 1941. The results of the Karatau Phosphorite Basin studding, p. 137149. In Developments in Kazakhstan geological studding for 20 years. AN Kazakhskoi SSR, Alma-Ata. (In Russian)Google Scholar
Bloeser, B. 1985. Melanocyrillium, a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. Journal of Paleontology, 59: 741765.Google Scholar
Bloeser, B., Schopf, J. W., Horodyski, R. J., and Breed, W. J. 1977. Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona. Science, 195: 676679.Google Scholar
Burzin, M. B. 1994. Principal trends in evolution of phytoplankton during the late Precambrian and earlier Cambrian, p. 5162. In Ecosystem transformations and evolution of biosphere. Nauka, Moscow. (In Russian)Google Scholar
Burzin, M. B. 1995. Late Vendian helicoid filamentous microfossils. Paleontological Journal, 29(1A): 134.Google Scholar
Butterfield, N. J. 2001. Paleobiology of the Late Proterozoic (ca. 1200 Ma) Hunting Formation, Somerset Island, Arctic Canada. Precambrian Research, 111: 235256.Google Scholar
Butterfield, N. J. 2004. A vaucherian alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology, 30: 231252.Google Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34, 84 p.Google Scholar
Cao, F. 1992. Algal microfossils of the Middle Proterozoic Gaoyuzhuang Formation in Pinggu County, Beijing. Geological Review, 38: 382387. (in Chinese)Google Scholar
Castenholz, R. W. and Waterbury, J. B. 1989. Oxygenic Photosynthetic Bacteria (Section 19), Group I: Cyanobacteria, p. 17101799. In Stanley, J. T. (ed.), Bergey's Manual of Systematic Bacteria. Williams and Wilkins, Baltimore.Google Scholar
Cohen, P.A., Knoll, A. H., and Kodner, R. B. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceedings of the National Academy of Sciences USA, 106: 65196524.CrossRefGoogle ScholarPubMed
Desikachary, T. V. 1959. Cyanophyta. Indian Council of Agricultural Research, New Delhi, 686 p.Google Scholar
Dethier, M. N. 1981. Heteromorphic Algal Life Histories: The Seasonal Pattern and Response to Herbivory of the Brown Crust, Ralfsia californica. Oecologia, 49: 333339.CrossRefGoogle ScholarPubMed
Downie, C. and Sarjeant, W. A. S. 1963. On the interpretation and status of some Hystrichosphaera genera. Palaeontology, 6: 8396.Google Scholar
Edelstein, T., Chen, L. C-M., and McLachian, J. 1970. The life cycle of Ralfsia clavata and R borneti . Canadian Journal of Botany, 48(3): 527531.Google Scholar
Eganov, E. A. and Sovietov, Yu. K. 1979. Karatau — a model for phosphorite deposition. Nauka, Novosibirsk, 192 p. (In Russian)Google Scholar
Eisenack, A. 1958. Microfossilien aus dem Ordovizium des Baltikums. 1. Markasitschicht, Dictyonema-Scheifer, Glaukonitsand, Glaukonitkalk. Senckenbergian Lethaea, 39: 389404.Google Scholar
Elenkin, A. A. 1949. Monographie algarum Cyanophycearum aquidulcium et terrestrium infinibus URSS inventarum. Izdatelstvo AN SSSR, Moscow, Pars specialis (Systematica), Fascicie, II:985-1908. (In Russian)Google Scholar
Fairchild, T. R. 1985. Size as criterion for distinguishing probable eukaryotic unicells in silicified Precambrian microfloras, p. 315320. In Campos, D. A., Ferreira, C. S., Brito, I. M., Viana, C. F. (eds.), Coletânea de Trabalhos Paleontológicos, Brasil, Departamento Nacional de Produção Mineral, Série Geologia no. 27, Seção Paleontologia e Estratigrafia no. 2, Brasilia.Google Scholar
Geitler, L. 1925. Cyanophyceae. A. Pascher's Die Süsswasserflora von Deutschlands, Ösrerreichs und der Schweiz. Band 12. Gustav Fisher, Jena, 450 p.Google Scholar
Geitler, L. 1932. Cyanophyceae. Rabenhorst's Kryptogamen-Flora von Deutschlands, Ösrerreichs und der Schweiz. Band 14. Akademische Verlagsgellschaft, Leipzig, 1119 p.Google Scholar
Gerasimenko, L. M., and Krylov, I. N. 1983. Post-mortem alteration of cyanobacteria in the algal-bacterial mats from the Kamchatka Peninsula termal springs. Doklady AN SSSR, 272(1): 201203. (In Russian)Google Scholar
Gnilovskaya, M. B., Veis, A. F., Bekker, Y. R., OlovyanishnikOV, V. G., and Raaben, M. E. 2000. Pre-Ediacaran fauna from Timan (Annelidomorphs of the Late Riphean). Stratigraphy and Geological Correlation, 8: 1139. (English version)Google Scholar
Golovenok, V. K. and Belova, M. Yu. 1984. Riphean microbiotas in cherts of the Billyakh Group on the Anabar Uplift. Paleontologicheskii zhumal, 4: 2030. (English version)Google Scholar
Golovenok, V. K. and Belova, M. Yu. 1985. Riphean microbiotas in cherts of the Yeniseyskiy Kryazh (Ridge). Paleontologicheskii zhurnal, 2: 94103 (English version).Google Scholar
Golovenok, V. K. and Belova, M. Yu. 1989. Vendian microfossils in cherts from Talas Alatau. Doklady AN SSSR, 305(2): 443445. (In Russian)Google Scholar
Golovenok, V. K. and Belova, M. Yu. 1992. Microfossils in cherts from the Sukhaya Tunguska Formation, Riphean, Turukhansk Uplift. Doklady Earth Sciences, 323: 114118. (In Russian)Google Scholar
Golovenok, V. K. and Belova, M. Yu. 1993. The microfossils in the cherts from the Riphean deposits of the Turukhansk Uplift. Stratigraphy and Geological Correlation, 1(3): 5161. (English version)Google Scholar
Golovenok, V. K., Belova, M. Yu., and Kurbatskaya, F. A. 1989. The first find of Obruchevella from the Vendian deposits of the Central Urals. Doklady AN SSSR, 309(3): 701705. (In Russian)Google Scholar
Golub, I. N. 1979. A new group of problematic microfossils from Vendian deposits of the Orshan depression (Russian Platform), p. 147155. In Sokolov, B. S. (ed.), Paleontology of Precambrian and Early Cambrian. Nauka, Leningrad. (In Russian)Google Scholar
Golubic, S. and Hofmann, H. J. 1976. Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolithic algal mats: cell division and degradation. Journal of Paleontology, 50: 10741082.Google Scholar
Golubic, S. and Focke, J. W. 1978. Phormidium hendersonii Howe: identity and significance of a modern stromatolite building microorganism. Journal of Sedimentary Petrology, 48: 751764.Google Scholar
Golubic, S., Sergeev, V. N., and Knoll, A. H. 1995. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia, 28: 285298.CrossRefGoogle ScholarPubMed
Green, J., Knoll, A. H., Golubic, S., and Swett, K. 1987. Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone-Dolomite “Series,” East Greenland. American Journal of Botany, 74: 928940.Google Scholar
Green, J., Knoll, A. H., and Swett, K. 1989. Microfossils from silicified stromatolithic carbonates of the Upper Proterozoic Limestones—Dolomite ‘Series,’ Central East Greenland. Tectonics, 119: 567585.Google Scholar
Grey, K. 2005. Ediacaran palynology of Australia. Association of Australasian Palaeontologists Memoir 31, 439 p.Google Scholar
Grey, K. 2008. Biostratigraphic correlation of Neoproterozoic glacial successions in Australia. In Gallagher, S. J. and Wallace, M. W. (eds.), Neoproterozoic Extreme Climates and the Origin of Early Metazoan Life, Extended Abstracts, Selwyn Symposium of the Geological Society of Australia Victoria Division, September 2008, Geological Society of Australia, 91: 511.Google Scholar
Grey, K., Hocking, R. M., Stevens, M. K., Bagas, L., Carlsen, G. M., Irimies, F., Pirajno, F., Haines, P. W., and Apak, S. N. 2005. Lithostratigraphic nomenclature of the Officer Basin and correlative parts of the Paterson Orogen, Western Australia. Western Australia Geological Survey, Report 93, 89 p.Google Scholar
Grey, K., Hill, A. C., and Calver, C. In press. Biostratigraphy and stratigraphic subdivision of Cryogenian successions of Australia. In Arnaud, E., Shields, G. and Halverson, G. (eds.), The Geologic Record of Neoproterozoic Glaciations. International Geological Correlation Program 512, Neoproterozoic Glacials.Google Scholar
Hermann, T. N. 1974. Finds of massive accumulations of trichomes in the Riphean, p. 610. In Timofeev, B. V. (ed.), Microfossils of Proterozoic and early Paleozoic of the USSR. Nauka, Leningrad. (In Russian)Google Scholar
Hermann, T. N. 1990. Organic world a billion years ago. Nauka, Leningrad, 50 p. (In Russian, with English summary)Google Scholar
Hofmann, H. J. 1976. Precambrian microflora, Belcher Island, Canada: significance and systematics. Journal of Paleontology, 50: 10401073.Google Scholar
Hofmann, H. J. and Schopf, J. W. 1983. Early Proterozoic microfossils, p. 321360. In Schopf, J. W. (ed.), Earth's Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, New Jersey.Google Scholar
Hofmann, H. J. and Jackson, C. D. 1991. Shelf-facies microfossils from the Uluksan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Paleontology, 65: 361382.CrossRefGoogle Scholar
Horodyski, R. J. and Donaldson, J. A. 1980. Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research, 11: 125159.Google Scholar
Horodyski, R. J. and Donaldson, J. A. 1983. Distribution and significance of microfossils in cherts of the Middle Proterozoic Dismal Lakes Group, District of Mackenzie, Northwest Territories, Canada. Journal of Paleontology, 57: 271288.Google Scholar
Javaux, E. J. and Marshal, C. P. 2006. A new approach in deciphering early protist palaeobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs. Review of Palaeobotany and Palynology, 139: 115.Google Scholar
Javaux, E. J., Knoll, A. H., and Walter, M. R. 2001. Morphology and ecological complexity in early eukaryotic ecosystems. Nature, 412: 6669.Google Scholar
Javaux, E. J., Knoll, A. H., and Walter, M. R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2: 121132.Google Scholar
Keller, B. M., Korolev, V. G., and Krylov, I. N. 1965. Subdivision of the Upper Proterozic in Tian Shan. Izvestiya AN SSSR, Seria Geologicheskaya, 4: 101115. (In Russian)Google Scholar
Kempe, A., Schopf, J. W., Altermann, W., Kudryavtsev, A. B., and Heckl, W. M. 2002. Atomic force microscopy of Precambrian microscopic fossils. Proceedings of the National Academy of Sciences USA, 99: 91179120.Google Scholar
Kirchner, O. 1900. Shizophyceae, p. 115121. In Engler, A. and Prantl, K. (eds.), Die natürlichen Pflanzenfamilien. I Teil, Abteilung Ia, Leipzig.Google Scholar
Knoll, A. H. 1981. Paleoecology of Late Precambrian microbial assemblages, p. 1754. In Niklas, K. (ed.), Paleobotany, Paleoecology and Evolution. Praeger, N. Y.Google Scholar
Knoll, A. H. 1982. Microfossils from the Late Precambrian Draken Conglomerate, Ny Friesland, Svalbard. Journal of Paleontology, 56: 577790.Google Scholar
Knoll, A. H. 1984. Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58: 131162.Google Scholar
Knoll, A. H. 1985. A paleobiological perspective on sabkhas. In Friedman, G. M. and Krumbein, W. E. (eds.), Ecological Studies, 53: 407425.Google Scholar
Knoll, A. H. 1992. Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard. Palaeontology, 35: 751774.Google Scholar
Knoll, A. H. 1996. Archean and Proterozoic Paleontology. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, 1: 5180.Google Scholar
Knoll, A. H. and Golubic, S. 1979. Anatomy and Taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10: 115151.Google Scholar
Knoll, A. H. and Calder, S. 1983. Microbiota of the Late Precambrian Ryssö Formation, Nordaustlandet, Svalbard. Palaeontology, 26: 467496.Google Scholar
Knoll, A. H. and Sergeev, V. N. 1995. Taphonomic and evolutionary changes across the Mesoproterozoic-Neoproterozoic transition. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195(1/3): 289302.CrossRefGoogle ScholarPubMed
Knoll, A. H., Barghoorn, E. S., and Golubic, S. 1975. Palaeopleurocapsa wopfneri gen. et sp. nov.: A Late Precambrian alga and its modern counterpart. Proceedings of the National Academy of Sciences USA, 72: 24882492.Google Scholar
Knoll, A. H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65: 531570.Google Scholar
Knoll, A. H., Walter, M. R., Narbonne, G., and Christie-Blick, N. 2006. The Ediacaran Period: A new addition to the geologic time scale. Lethaia, 39: 1330.Google Scholar
Kolosov, P. N. 1984. Late Precambrian microorganisms from the east of Siberian Platform. Yakutian Filial of Siberian Branch of Academy of Sciences of the USSR, Yakutsk, 84 p. (In Russian)Google Scholar
Kondratyeva, N. V. 1975. Morphogenenisis and main ways of the hormogonian algae evolution. Naukova Dumka, Kiev, 302 p. (In Russian)Google Scholar
Korolev, V. G. 1961. Schema of Tian-Shan and adjacent areas tectonic zones. Izvestiya Kyzgyzskogo filiala VGO, 3: 81102. (In Russian)Google Scholar
Korolev, V. G. 1971. Upper Precambrian stratigraphy of Tian-Shan Mountains and Karatau, p. 117118. In Precambrian stratigraphy of Kazakhstan and Tian-Shan. MGU, Moscow. (In Russian)Google Scholar
Korolev, V. G. and Ogurtsova, R. N. 1981. Acritarchs of the Lower Cambrian upper part deposits from the Talas-Karatau zone (Maly Karatau Range). Doklady AN SSSR, 261(1): 162164. (In Russian) Korolev, and, V. G. Ogurtsova, R. N. 1982. Correlation of boundary Vendian-Lower Cambrian deposits of the Talas-Karatau zone (Maly Karatau Range) with the reference sections of the East European and Siberian platforms. Izvestiya AN SSSR, Seria Geologicheskaya, 6: 27–36. (In Russian)Google Scholar
Krylov, I. N. 1967. Riphean and Lower Cambrian stromatolites of Tian-Shan Mountains and Karatau. Nauka, Moscow, 76 p. (In Russian)Google Scholar
Krylov, I. N. 1985. Stromatolites in upper Precambrian stratigraphy: problems 85. Izvestiya AN SSSR, Seria Geologicheskaya, 11: 4455. (In Russian)Google Scholar
Krylov, I. N., Orleanskii, V. K., and Zavarzin, G. A. 1983. Microroganisms in the algal-bacterial mats from the Kamchatka Peninsula thermal springs. Doklady AN SSSR, 268(6): 14831485. (In Russian)Google Scholar
Krylov, I. N., Veis, A. F., and Sergeev, V. N. 1989. Microfossils in Precambrian stratigraphy: problems and perspectives, p. 3142. In Krashenninikov, V. A. (ed.), Problems of Proterozoic and Phanerozoic stratigraphy. Nauka, Moscow. (In Russian) Google Scholar
Kützing, T. F. 1843. Phycologia generalis, oder Anatomie, Physiologie, und Systematik der Tange. F. A. Brockhaus, Leipzig, 458 p.Google Scholar
Lo, S. C. 1980. Microbial fossils from the Lower Yudoma Suite, earliest Phanerozoic, Eastern Siberia. Precambrian Research, 13: 109166.Google Scholar
Luchinina, V. A. 1975. Paleoalgological fulfillment of the Early Cambrian of the Siberian Platform. Nauka, Novosibirsk, 97 p. (In Russian)Google Scholar
MacQuaid, C. D. and Froneman, P. W. 1993. Mutualism between the territorial intertidal limpet Patella longicosta and the crustose alga Ralfsia verrucosa . Oecologia, 96: 128133 Google Scholar
Maliva, R. G., Knoll, A. H., and Siever, R. 1989. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios, 4: 519532.Google Scholar
Maslov, V. P. 1937. On the Paleozoic rock-building algae of east Siberia. Problems of Paleontology, 2/3: 249325. (In Russian, with English summary, pp. 314–325)Google Scholar
Mendelson, C. V. and Schopf, J. W. 1982. Proterozoic microfossils from the Sukhaya Tunguska, Shorikha and Yudoma Formations of the Siberian platform, U.S.S.R. Journal of Paleontology, 56: 4283.Google Scholar
Mendelson, C. V. and Schopf, J. W. 1992. Proterozoic and selected Early Cambrian microfossils and microfossil-like objects, p. 865951. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, New York.Google Scholar
Missarzhevskii, V. V. 1989. The oldest shelly fossils and the stratigraphy of the Precambrian-Cambrian boundary deposits. Nauka, Moscow, 237 p. (In Russian).Google Scholar
Missarzhevskii, V. V. and Mambetov, A. M. 1981. Stratigraphy and fauna of the Maly Karatau Precambrian-Cambrian boundary deposits. Nauka, Moscow, 92 p. (In Russian)Google Scholar
Moczydłowska, M. and Willman, S. 2009. Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities. Precambrian Research, 173: 2738.Google Scholar
Nagovitsin, K. E. 2000. Silicified microbiotas of the Upper Riphean of the Yenisei Ridge: news in paleontology and stratigraphy. Geologia i Geofizika, 41(2/3): 731. (English version)Google Scholar
Naumova, S. N. 1949. Spores of the Lower Cambrian. Izvestiya Akademiya Nauk SSSR, Seriya Geologicheskaya, 4: 4956. (In Russian)Google Scholar
Nyberg, A. V. and Schopf, J. W. 1984. Microfossils in stromatolithic cherts from the Upper Proterozoic Min'yar Formation, southern Ural Mountains, USSR. Journal of Paleontology, 58: 738772.Google Scholar
Oehler, D. Z. 1976. Transmission electron microscopy of organic microfossils from the Late Precambrian Bitter Springs Formation of Australia: Techniques and survey of preserved ultrastructure. Journal of Paleontology, 50: 90106.Google Scholar
Oehler, D. Z. 1977. Pyrenoid-like structures in Late Precambrian algae from the Bitter Springs Formation of central Australia. Journal of Paleontology, 51: 885901.Google Scholar
Ogurtsova, R. N. 1985. The plant microfossils of the Vendian-Lower Cambrian Maly Karatau reference section. Ilim, Frunze, 136 p. (In Russian)Google Scholar
Ogurtsova, R. N. and Sergeev, V. N. 1987. The microbiota of the Upper Precambrian Chichkanskaya Formation in the Lesser Karatay Region (southern Kazakhstan). Paleontologicheskii Zhurnal, 2: 101112. (English version)Google Scholar
Ogurtsova, R. N. and Sergeev, V. N. 1989. Megaspheromorphidas from the Upper Precambrian Chichkanskaya Formation, southern Kazakhstan. Paleontologicheskii zhurnal, 2: 119122 (in Russian).Google Scholar
Petrov, P. Yu. and Veis, A. F. 1995. Facial-ecological structure of the Derevnya Formation microbiota: Upper Riphean, Turukhansk Uplift, Siberia. Stratigraphy and Geological Correlation, 3(5), 435460. (English version)Google Scholar
Petrov, P. Yu., Semikhatov, M. A., and Sergeev, V. N. 1995. Development of the Riphean carbonate platform and distribution of silicified microfossils: the Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia. Stratigraphy and Geological Correlation, 3(6): 7999. (English version)Google Scholar
Porter, S. M., Mesterfeld, R., and Knoll, A. H. 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. Journal of Paleontology, 77: 409429.Google Scholar
Reitlinger, E. A. 1948. Cambrian foraminifera of Yakutia. Bulletin of Moscow Nature Investigators Society, Geological Section, 23: 7781. (In Russian)Google Scholar
Ripka, R., Deruelles, J., Waterbury, J. B., Herdman, J., and Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111: 161.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. Journal of Paleontology, 42: 651688.Google Scholar
Schopf, J. W. 1974. The development and evolution of Precambrian life. Origins of Life, 5: 119135.Google Scholar
Schopf, J. W. 1976. Are the oldest “fossils,” fossils? Origins of Life, 7: 1936.Google Scholar
Schopf, J. W. 1977. Biostratigraphic usefulness of stromatolite Precambrian microbiotas: A preliminary analysis. Precambrian Research, 5: 143173.Google Scholar
Schopf, J. W. 1978. The evolution of the earliest cells. Scientific American, 239(3): 110138.Google Scholar
Schopf, J. W. 1992a. Times of origin and earliest evidence of major biologic groups, p. 587593. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, New York.Google Scholar
Schopf, J. W. 1992b. Proterozoic prokaryotes: affinities, geologic distribution, and evolutionary trends, p. 195218. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, New York.CrossRefGoogle Scholar
Schopf, J. W. 1992c. Atlas of representative Proterozoic Microfossils, p. 10551118. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, New York.CrossRefGoogle Scholar
Schopf, J. W. 1995. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proceedings of the National Academy of Sciences USA, 91: 67356742.Google Scholar
Schopf, J. W. 1999. Cradle of Life, The Discovery of Earth's Earliest Fossils. Princeton University Press, Princeton, NJ, 367 p.Google Scholar
Schopf, J. W. 2009. Paleontology, microbial, p. 390400. In Lederberg, J. and Schaechter, M. (eds.), Encyclopedia of Microbiology, Third Edition. Elsevier, Amsterdam.Google Scholar
Schopf, J. W. and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, central Australia. Journal of Paleontology, 45: 925960.Google Scholar
Schopf, J. W. and Kudryavtsev, A. B. 2005. Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology, 3: 112.Google Scholar
Schopf, J. W. and Oehler, D. Z. 1976. How old are the eukaryotes? Science, 193: 4749.Google Scholar
Schopf, J. W. and Sovietov, Yu. K. 1976a. Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostraigraphy. Science, 193: 143146.Google Scholar
Schopf, J. W. and Sovietov, Yu. K. 1976b. Microfossils in Conophyton from the Vendian deposits of South Kazakhstan. Doklady AN SSSR, 230(6): 14481450. (In Russian)Google Scholar
Schopf, J. W., Dolnik, T. A., Krylov, I. N., Mendelson, C. V., Nazarov, B. B., Nyberg, A. V., Sovietov, Yu. K., and Yakshin, M. S. 1977. Six new stromatolithic microbiotas from the Proterozoic of the Soviet Union. Precambrian Research, 4: 269285.Google Scholar
Schopf, J. W., Dolnik, T. A., Krylov, I. N., Mendelson, C. V., Nazarov, B. B., Nyberg, A. V., Sovietov, Yu. K., and Yakshin, M. S. 1979. Microfossils in Precambrian stromatolitic rocks of the USSR, p. 104109. In Sokolov, B. S. (ed.), Paleontology of Precambrian and Early Cambrian. Nauka, Leningrad. (In Russian)Google Scholar
Schopf, J. W., Haugh, B. N., Molnar, R. E., and Satterthwait, D. F. 1973. On the development of metaphytes and metazoans. Journal of Paleontology, 47: 19.Google Scholar
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Czaja, A. D., and Wdowiak, T. J. 2005. Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology, 5: 333371.Google Scholar
Schopf, J. W., Kudryavtsev, A. B., and Sergeev, V. N. 2010. Confocal laser scanning microscopy and raman imagery of the late Neoproterozoic Chichkan microbiota of South Kazakhstan. Journal of Paleontology, 84(3): 402416.Google Scholar
Schulz, H. N. and Schulz, H. D. 2005. Large sulphur bacteria and the formation of phosphorite. Science, 307: 416418.Google Scholar
Schenfil’, V. Yu. 1980. Obruchevellas in the Riphean deposits of Yeniseyskiy Kryazh (Ridge). Doklady AN SSSR, 254(4): 993994. (In Russian)Google Scholar
Schenfil’, V. Yu. 1983. Algae in the Precambrian deposits of Eastern Siberia. Doklady AN SSSR, 269(2): 471473. (In Russian)Google Scholar
Schultze-Lam, S., Ferris, F. G., Konhauser, K. O., and Wiese, R. G. 1995. In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation. Canadian Journal of Earth Sciences, 32: 20212026.Google Scholar
Sergeev, V. N. 1984. Microfossils in the silicified columnar stromatolites from the Upper Riphean deposits of the Turukhansk Uplift. Doklady AN SSSR, 278(2): 436440. (In Russian)Google Scholar
Sergeev, V. N. 1988. Silicified microfossils from the stratotype of the Middle Riphean, southern Ural Mountains. Doklady AN SSSR, 303(3): 708710. (In Russian)Google Scholar
Sergeev, V. N. 1989. Microfossils from transitional Precambrian-Phanerozoic strata of Central Asia. Himalayan Geology, 13: 269278.Google Scholar
Sergeev, V. N. 1992a. Silicified microfossils from the Precambrian and Cambrian deposits of the southern Ural Mountains and Middle Asia. Nauka, Moscow, 134 p. (In Russian).Google Scholar
Sergeev, V. N. 1992b. Silicified microfossils from the Avzyan Formation, southern Ural Mountains. Paleontologicheskii zhurnal, 2: 103112. (In Russian)Google Scholar
Sergeev, V. N. 1993. Silicified Riphean microfossils of the Anabar Uplift. Stratigraphy and Geological Correlation, 1: 264278. (English version)Google Scholar
Sergeev, V. N. 1994. Microfossils in cherts from the Middle Riphean (Mesoproterozoic) Avzyan Formation, southern Ural Mountains, Russian Federation. Precambian Research, 65: 231254.Google Scholar
Sergeev, V. N. 1997. Mesoproterozoic microbiotas of the Northern Hemisphere and the Meso-Neoproterozoic transition. In Proceeding of 30th International Geological Congress, Beijing, 1: 177185.Google Scholar
Sergeev, V. N. 2001. Paleobiology of the Neoproterozoic (Upper Riphean) Shorikha and Burovaya silicified microbiotas, Turukhansk Uplift, Siberia. Journal of Paleontology, 75: 427448.Google Scholar
Sergeev, V. N. 2002. Silicified microfossils from the Vendian Yudoma Group, the Uchur-Maya Region of Siberia: Facies dependence and biostratigraphic potential. Stratigraphy and Geological Correlation, 10(6): 547564. (English version)Google Scholar
Sergeev, V. N. 2006. Precambrian microfossils in cherts: Their paleobiology, classification and biostratigraphic usefulness. GEOS, Moscow, 280 p. (In Russian)Google Scholar
Sergeev, V. N. 2009. The distribution of microfossil assemblages in Proterozoic rocks. Precambrian Research, 173: 212222.Google Scholar
Sergeev, V. N. and Krylov, I. N. 1986. Microfossils of the Min'yar Formation from the Basin of Inzer River. Paleontologicheskii zhurnal, 1: 8495. (In Russian)Google Scholar
Sergeev, V. N. and Seong-Joo, Lee 2001. Microfossils from cherts of the Middle Riphean Svetlyi Formation, the Uchur-Maya Region of Siberia and their stratigraphic significance. Stratigraphy and Geological Correlation, 9(1): 110. (English version)Google Scholar
Sergeev, V. N. and Seong-Joo, Lee 2004. New data on silicified microfossils from the Satka Formation of the Lower Riphean Stratotype, the Urals. Stratigraphy and Geological Correlation, 12(1): 121. (English version)Google Scholar
Sergeev, V. N. and Seong-Joo, Lee 2006. Real eukaryotes and precipitates first found in the Middle Riphean Stratotype, Southern Urals. Stratigraphy and Geological Correlation, 14(1): 118. (English version)Google Scholar
Sergeev, V. N. and Mudrenko, L. M. 1997. Finds of fossilized microbial communities in microphytolites Nubecularites . Doklady Earth Sciences, 357(4): 524528. (In Russian)Google Scholar
Sergeev, V. N. and Ogurtsova, R. N. 1989. Microbiota from the Lower Cambrian phosphatic deposits of the Maly Karatau (South Kazakhstan). Izvestiya Akademiya Nauk SSSR, Seriya Geologicheskaya, 3: 5866. (In Russian)Google Scholar
Sergeev, V. N., Knoll, A. H., and Grotzinger, J. P. 1995. Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, northeastern Siberia. Paleontological Society Memoir 39, 37 p.Google Scholar
Sergeev, V. N., Knoll, A. H., and Petrov, P. Yu. 1997. Paleobiology of the Mesoproterozoic-Neoproterozoic transition: the Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia. Precambrian Research, 85: 201239.Google Scholar
Sergeev, V. N., Sharma, M., and Shukla, Y. 2008. Mesoproterozoic silicified microbiotas of Russia and India—Characteristics and Contrasts. Palaeobotanist, 57: 323358 Google Scholar
Sergeev, V. N., Knoll, A. H., Kolosova, S. P., and Kolosov, P. N. 1994. Microfossils in cherts from the Mesoproterozoic Debengda Formation, the Olenek Uplift, Northeastern Siberia. Stratigraphy and Geological Correlation, 2(1): 2338. (English version)Google Scholar
SIEDLECKA, A. 1982. Supralitoral ponded algal stromatolites of the Late Precambrian Annijokka Member of the Batsfjord Formation, Varanger Peninsula, North Norway. Precambrian Research, 18: 319345.Google Scholar
Sovietov, Yu. K. 2008. Neoproterozoic rifting and sedimentary basins evolution located on the Tarim-type microcontinents: Maly Karatau, southern Kazakhstan, p. 143146. In Sedimentogenesis and lithogenesis types and their evolution through Earth's History. Transactions of 5th All-Russian Lithological Conference. Russian Academy of Science, Yekaterinburg. (In Russian)Google Scholar
Srivastava, P. and Kumar, S. 2003. New microfossils from the Meso-Neoproterozoic Deoban Limestone, Garhwal, Lesser Himalaya, India. Palaeobotanist, 52: 1347.Google Scholar
Stanier, R. Y., Sistrom, W. R., Hansen, T. A., Whitton, B. A., Castenholz, R. W., Pfennig, N., Gorlenko, V. M., Kondratieva, E. N., Eimhjellen, K. E., Whittenbury, R., Gherna, R. L., and Trüper, H. G. 1978. Proposal to place nomencluture of the Cyanobacteria (blue-green algae) under the rules of the International Code of Nomencluture of bacteria. International Journal of Systematic bacteriology, 28: 335336.Google Scholar
Tappan, H. 1980. The paleobiology of plant protists. Freeman, San Francisco, 1028 p.Google Scholar
Thuret, G. 1875. Essai de classification des nostocines. Annales des Sciences Naturelles, Paris (Botanique), 6: 372382.Google Scholar
Timofeev, B. V. 1966. Micropaleophytological Research into ancient strata. Nauka, Leningrad, 147 p. (In Russian) (English translation 1974, British Library-Landing Div., London, 214 p.)Google Scholar
Timofeev, B. V. and Hermann, T. N. 1979. The Precambrian microbiota of the Lakhanda Formation, p. 137147. In Sokolov, B. S. (ed.), Paleontology of Precambrian and Early Cambrian. Nauka, Leningrad. (In Russian)Google Scholar
Timofeev, B. V., Hermann, T. N., and Mikhailova, N. S. 1976. Microphytofossils from the Precambrian, Cambrian and Ordovician. Nauka, Leningrad, 106 p. (In Russian)Google Scholar
Tiwari, M. and Pant, S. 2004. Organic-walled microfossils from the Neoproterozoic black phosphate, stringers in the Gangolihat Dolomite, Lesser Himalaya, India. Current Science, 87: 17331738.Google Scholar
Veis, A. F. and Petrov, P. Yu. 1994a. Dependence of the Riphean organic walled microfossils systematic diversity on conditions of their environment in Siberia. In Ecosystem restructures and the evolution of biosphere, Moscow, Nedra, 1: 3242. (In Russian)Google Scholar
Veis, A. F. and Petrov, P. Yu. 1994b. The main peculiarities of the environmental distribution of microfossils in the Riphean Basins of Siberia. Stratigraphy and Geological Correlation, 2(1): 397425. (English version)Google Scholar
Veis, A. F., Fedorov, D. L., Kuzmenko, Y. T., Vorob'eva, N. G., and Golubkova, E. Y. 2004. Microfossils and Riphean Stratigraphy in the North European Platform (Mezen Syneclise). Stratigraphy and Geological Correlation, 12(6): 1635. (English version)Google Scholar
Veis, A. F., Petrov, P. Yu., and Vorob'eva, N. G. 1998. Age transformations of the facies-ecological structure of Precambrian biotas and Riphean stratigraphy. Geologia i Geofizika, 39: 8293. (English version)Google Scholar
Veis, A. F., Vorob'eva, N. G., and Golubkova, E. Y. 2006. The Early Vendian microfossils first found in the Russian Plate: Taxonomic composition and biostratigraphic significance. Stratigraphy and Geological Correlation, 14(4): 368385. (English version)Google Scholar
Vidal, G., 1981. Micropalaeontology and Biostratigraphy of the Upper Proterozoic and Lower Cambrian Sequence in East Finnmark, Northern Norway. Norges Geol. Unders., 362: 153.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Semikhatov, M. A. 2006. Unique Lower Vendian Kel'tma microbiota, Timan Ridge: new evidence for the paleontological essence and global significance of the Vendian System. Doklady Earth Sciences, 40: 10381043.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2007. Microfossil assemblages from the Vychegda Formation of the East European Platform passive margin — a biostratigraphic model for the Upper Riphean (Crygenian)/Vendian (Ediacaran) boundary, p. 4246. In The Rise and Fall of the Vendian (ediacaran) biota. Origin of the Modern Biosphere. Transaction of the International Conference on the IGCP Project 493. Geos, Moscow.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Chumakov, N. M. 2008. New Finds of Early Vendian Microfossils in the Ura Formation: Revision of the Patom Supergroup Age, Middle Siberia. Doklady Earth Sciences, 419: 782787. (English version)Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2009a. Neoproterozoic microfossils from the northeastern margin of the East European Platform. Journal of Paleontology, 83: 161196.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2009b. Neoproterozoic microfossils from the margin of the East European Platform and the search for a biostratigraphic model of lower Ediacaran rocks. Precambrian Research, 173: 163169.Google Scholar
Walter, M. R., Bauld, J., and Brock, T. D. 1976. Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park, p. 273310. In Walter, M. R. (ed.), Stromatolites. Elsevier, Amsterdam-Oxford-New York.Google Scholar
Willman, S. and Moczydlowska, M. 2008. Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation. Precambrian Research, 162: 498530.Google Scholar
Wettstein, F. V. 1924. Handbuch der Systematischer Botanik, 3rd Edition. Franz Deutike, Leipzig, Band 1, 1017 p.Google Scholar
Woese, C. and Fox, G. 1977. Phylogenetic structure of the prokaryotic domain. Proceedings of the National Academy of Sciences USA, 74: 50885090.Google Scholar
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74: 767788.Google Scholar
Yankauskas, T. V. 1979. Lower Riphean microbiotas of the southern Ural Mountains. Doklady AN SSSR, 247(6): 14651467. (In Russian)Google Scholar
Yankauskas, T. V. 1980. New algae from the Upper Riphean of the southern Ural Mountains and Cis-Ural. Paleontologicheskii zhurnal, 4: 122128. (In Russian)Google Scholar
Yankauskas, T. V. (ed.). 1989. Precambrian microfossils of the USSR. Nauka, Leningrad, 188 p. (In Russian)Google Scholar
Yakschin, Y. S. 1989. Microbiota of Kotuikan Suite (Lower Riphean) of the Anabar Massif. Himalayan Geology, 13: 239248.Google Scholar
Yakschin, M. S. 1991. Algal microbiota from the Lower Riphean deposits of the Anabar Uplift. Nauka, Novosibirsk, 61 p. (In Russian)Google Scholar
Yakschin, M. S. and Luchinina, V. A. 1981. New data on fossilized algae of family Oscillatoriaceae (Kirchn.) Elenkin, p. 2834. In Precambrian-Cambrian boundary deposits of the Siberian platform. Nauka, Novosibirsk. (In Russian)Google Scholar
Yin, L. 1985. Microfossils of the Doushantuo Formation in the Yangtze Gorge district, western Hebei. Palaeontologia Cathayana, 2: 229249.Google Scholar
YIN, L. 1987. Microbiotas of latest Precambrian sequences in China. Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian-Cambrian Boundary, 1: 415494.Google Scholar
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cyst. Nature, 446: 661663.Google Scholar
Zang, W. 1995. Early Neoproterozoic sequence stratigraphy and acritarch biostratigraphy, eastern Officer Basin, South Australia. Precambrian Research, 74: 119175.Google Scholar
Zang, W. and Walter, M. R. 1989. Latest Proterozoic plankton from the Amadeus Basin in central Australia. Nature, 337: 642645.Google Scholar
Zang, W. and Walter, M. R. 1992. Late Proterozoic and Early Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. Association of Australasian Palaeontologists Memoir 12, 132 p.Google Scholar
Zaslavskaya, N. M., Apollonov, M. K., and Zhemchuzhnikov, V. G. 1987. First finds of chitinozoans from the Upper Cambrian and Lower Ordovician of Kazakhstan. Izvestiya AN Kazakhskoi SSR, Seria Geologicheskaya, 1: 4250. (In Russian)Google Scholar
Zhang, P. and Gu, S. 1986. Microfossils from the Wumishan Formation of the Jixian System in the Ming Tombs, Beijing, China. Acta Geologica Sinica, 60: 1322.Google Scholar
Zhang, P., Zhu, M., and Song, W. 1989. Middle Proterozoic (1200-1400 Ma) microfossils from the Western Hills near Beijing, China. Canadian Journal of Earth Sciences, 26: 322328.Google Scholar
Zhang, Y. 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Riphean), Hebei, China. Journal of Paleontology, 55: 485506.Google Scholar
Zhang, Y. 1985. Stromatolitic microbiota from the Middle Proterozoic Wumishan Formation (Jixian Group) of the Ming Tombs, Beijing, China. Precambrian Research, 30: 277302.Google Scholar
Zhang, Y. 1989. Multicellular thallophytes with differentiated tissue from late Proterozoic phosphate rocks of South China. Lethaia, 22: 113132.Google Scholar
Zhang, Y. and Yuan, X. 1992. New data on multicellular thallophytes and fragments of cellular tissue from Late Proterozoic phosphate rocks, South China. Lethaia, 25: 118.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, China. Paleontological Society Memoir 50, 56 p.Google Scholar
Zhuravleva, Z. A. 1986. Age of the Karoy Complex deposits, Maly Karatau. Izvestya AN SSSR, Seria Geologicheskaya, 11: 1825. (In Russian)Google Scholar