Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T04:41:21.270Z Has data issue: false hasContentIssue false

Synziphosurines (Xiphosura: Chelicerata) from the Silurian of Iowa

Published online by Cambridge University Press:  14 July 2015

Rachel A. Moore
Affiliation:
1Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
Derek E. G. Briggs
Affiliation:
2Department of Geology and Geophysics, and Peabody Museum of Natural History, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109, USA
Simon J. Braddy
Affiliation:
1Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
Jeffrey W. Shultz
Affiliation:
3Department of Entomology, University of Maryland, College Park, Maryland 20742, USA

Abstract

A new genus and species of synziphosurine (Chelicerata) is described from the Silurian (Wenlock) Scotch Grove Formation Konservat-Lagerstätte in Clinton County, Iowa. Camanchia grovensis n. gen. n. sp. is characterized by a sub-triangular carapace, ten opisthosomal segments divided into a preabdomen of seven and a postabdomen of three, and a tuberculate ornament on the carapace and pleural margins. A single new specimen from the same location is assigned to Venustulus waukeshaensis, originally described from the Late Llandovery Waukesha Konservat-Lagerstätte of Wisconsin. A comparison of the musculature of C. grovensis with that of living Limulus polyphemus and the Jurassic Mesolimulus walchi from Nusplingen, Germany shows that it is much simpler, consistent with the status of synziphosurines as stem xiphosurids.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L. I. and Selden, P. A. 1997. Opisthosomal fusion and phylogeny of Palaeozoic Xiphosura. Lethaia, 30:1931.Google Scholar
Anderson, L. I. and Moore, R. A. 2004. Bembicosoma re-examined: a xiphosuran from the North Esk Silurian Inlier, Pentland Hills, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences, 94:199206.Google Scholar
Anderson, L. I., Poschmann, K., and Brauckmann, C. 1998. On the Emsian (Lower Devonian) arthropods of the Rhenish Slate Mountains: 2. The synziphosurine Willwerathia. Paläontologische Zeitschrift, 72:325336.Google Scholar
Briggs, D. E. G. and Collins, O. 1988. A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology, 31:779798.Google Scholar
Briggs, D. E. G. and Kear, A. J. 1994. Decay and mineralization of shrimps. Palaios, 9:431456.Google Scholar
Briggs, D. E. G., Moore, R. A., Shultz, J. W., and Schweigert, G. 2005. Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proceedings of the Royal Society, London B, 272:627632.Google Scholar
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.Google Scholar
Butterfield, N. J., Balthasar, U., and Wilson, L. A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537543.Google Scholar
Chang, L. L. Y., Howie, R. A., and Zussman, J. 1998. Phosphates, p. 297352. In Rock-Forming Minerals: Non-silicates: Sulphates, Carbonates, Phosphates, Halides, 2nd Ed., Vol. 5B. Longman, Essex.Google Scholar
Chen, J.-Y., Waloszek, D., and Maas, A. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and the homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia, 37:320.Google Scholar
Cotton, T. J. and Braddy, S. J. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94:169193.Google Scholar
Currie, L. D. 1927. On Cyamocephalus, a new synxiphosuran from the Upper Silurian of Lesmahago, Lanarkshire. Geological Magazine, 64:153157.Google Scholar
Demarest, A. G. 1822. Histoire naturelle de crustacés fossiles: Les Crustacés proprement dits. Paris.Google Scholar
Dunlop, J. A. 2006. New ideas about the euchelicerate stem-lineage, p. 923. In Deltshev, C. and Stoev, D. (eds.), European Arachnology 2005. Acta Zoologica bulgarica (Suppl. 1).Google Scholar
Dunlop, J. A. 2010. Geological history and phylogeny of Chelicerata. Arthropod structure and development, 39:124142.CrossRefGoogle ScholarPubMed
Dunlop, J. A. and Selden, P. A. 1997. The early history and phylogeny of the chelicerates, p. 221235. In Fortey, R. A. and Fortey, R.H. (eds.), Thomas Arthropod Relationships. Chapman and Hall, London.Google Scholar
Eichwald, E. 1854. Die Grauwackenschichten von Live-und Esthland. Bulletin de la Société Imperiale des Nauralistes de Moscou, 27:1211.Google Scholar
Eldredge, N. 1974. Revision of the suborder Synziphosurina (Chelicerata: Merostomata), with remarks on merostome phylogeny. American Museum Novitates, 2543:141.Google Scholar
Flower, R. 1969. Merostomes from a Cotter horizon of the El Paso Group. New Mexico Bureau of Mines and Mineral Resources Memoir, 22:3544.Google Scholar
Frederichs, T., Von Dobeneck, T., Bleil, U., and Dekkers, M. J. 2003. Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties. Physics and Chemistry of the Earth, 28:669679.Google Scholar
Gabbott, S. E. 1998. Taphonomy of the Ordovician Soom Shale Lagerstätte: An example of soft tissue preservation in clay minerals. Palaeontology, 41:631669.Google Scholar
Gabbott, S. E., Aldridge, R. J. and Theron, J. N. 1995. A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa. Nature, 374:800803.Google Scholar
Gabbott, S. E., Norry, M. J., Aldridge, R. J., and Theron, J. N. 2001. Preservation of fossils in clay minerals; a unique example from the Upper Ordovician Soom Shale, South Africa. Proceedings of the Yorkshire Geological Society, 53:237244.Google Scholar
Gaines, R.R., Briggs, D. E. G., and Zhao, Y.-L. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology, 36:755758.Google Scholar
Heymons, R. 1901. Die Entwicklungsgeschichte der Scolopender. Zoologica, 13:1244.Google Scholar
John, D. L., Hughes, N. C., Galaviz, M. I., Gunderson, G. O., and Meyer, R. 2010. Unusually preserved Metaconularia manni (Roy, 1935) from the Silurian of Iowa, and the systematics of the genus. Journal of Paleontology, 84:131.CrossRefGoogle Scholar
Krzeminski, W., Krzeminska, E., and Wojciechowski, D. 2010. Silurian synziphosurine horseshoe crab Pasternakevia revisited. Acta Palaeontologica Polonica, 55:133139.Google Scholar
Latreille, P. A. 1802. Histoire naturelle, générale et particulière, des Crustacés et des Insectes. Dufart, Paris, 467 p.Google Scholar
Martill, D. M. 1990. Macromolecular resolution of fossilized muscle tissue from an elopomorph fish. Nature, 346:171172.Google Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985a. A Silurian soft-bodied biota. Science, 228:715717.Google Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985b. A new exceptionally preserved biota from the Lower Silurian of Wisconsin, U.S.A. Philosophical Transactions of the Royal Society of London B, 311:7585.Google Scholar
Moore, R. A. and Braddy, S. J. 2005. A glyptocystitid cystoid affinity for the putative stem group chelicerate (Arthropoda: Aglaspidida or Xiphosura) Lemoneites from the Ordovician of Texas. Lethaia, 38:293296.Google Scholar
Moore, R. A., Briggs, D. E. G., Braddy, S. J., Anderson, L. I., Mikulic, D. G., and Kluessendorf, J. 2005a. A new synziphosurine (Chelicerata: Xiphosura) from the Late Llandovery Waukesha Lagerstätte, Wisconsin, USA. Journal of Paleontology, 79:242250.Google Scholar
Moore, R. A., Briggs, D. E. G., and Bartels, C. 2005b. A new specimen of Weinbergina opitzi (Chelicerata: Xiphosura) from the Lower Devonian Hunsrück Slate, Germany. Paläontologische Zeitschrift, 79:399408.Google Scholar
Moore, R. A., McKenzie, S. C., and Lieberman, B. S. 2007. A Carboniferous synziphosurine (Xiphosura) from the Bear Gulch Limestone, Montana, USA. Palaeontology, 50:10131019.Google Scholar
Nieszkowski, J. 1859. Zusatze zur Monographie der Trilobiten der Osteeprovinzen, nebst der Beschreibung einiger neuen obersilurischen Crustaceen. Arch Naturk, Liv.-Est. u. Kurlands, 1:345384.Google Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale Animals Replicated in Clay Minerals. Science, 281:11731175.Google Scholar
Ortega-Hernández, J., Braddy, S. J., and Rak, S. 2010. Trilobite and xiphosuran affinities for putative aglaspidid arthropods Caryon and Drabovaspis, Upper Ordovician, Czech Republic. Lethaia, 43:427431.Google Scholar
Packard, A. S. 1886. On the Carboniferous xiphosurous fauna of North America. Memoirs of the National Academy of Sciences, 3:143157.Google Scholar
Pickett, J. W. 1993. A Late Devonian xiphosuran from near Parkes, New South Wales. Memoirs of the Association of Australian Palaeontologists, 15:279287.Google Scholar
Richter, R. and Richter, E. 1929. Weinbergina opitzi, n.g., n. sp., ein Schwertträger (Merost., Xiphos,) aus dem Devon (Rheinland). Senckenbergiana, 11:193209.Google Scholar
Rudkin, D.M., Young, G. A., and Nolan, G. S. 2008. The oldest horseshoe crab: a new xiphosurid from Late Ordovician Konservat-Lagerstätten deposits, Manitoba, Canada. Palaeontology, 51:19.Google Scholar
Selden, P. A. and Drygant, D. M. 1987. A new Silurian xiphosuran from Podolia, Ukraine, USSR. Palaeontology, 30:537542.Google Scholar
Selden, P. A. and Siveter, D. J. 1987. The origin of the limuloids. Lethaia, 20:384392.Google Scholar
Shultz, J. W. 1990. Evolutionary morphology and phylogeny of Arachnida. Cladistics, 6:138.Google Scholar
Shultz, J. W. 1993. Muscular anatomy of the giant whipscorpion Mastigoproctus giganteus (Lucas) (Arachnida: Uropygi) and its evolutionary significance. Zoological Journal of the Linnean Society, 108:335365.Google Scholar
Shultz, J. W. 1999. Muscular anatomy of a whipspider, Phrynus longipes (Pocock) (Arachnida: Amblypygi), and its evolutionary significance. Zoological Journal of the Linnean Society, 126:81116.Google Scholar
Shultz, J. W. 2001. Gross muscular anatomy of Limulus polyphemus (Xiphosura, Chelicerata) and its bearing on evolution in the Arachnida. The Journal of Arachnology, 29:283303.Google Scholar
Shultz, J. W. 2007. A phylogenetic analysis of the arachnid orders based on morphological characters. Zoological Journal of the Linnean Society, 150:221265.Google Scholar
Størnier, L. 1936. Eurypteriden aus dem Rheinischen Unterdevon. Abhandlungen der Preußischen Geologischen Landesanstalt. Neue Folge, 175:174.Google Scholar
Stürmer, W. and Bergström, J. 1981. Weinbergina, a xiphosuran arthropod from the Devonian Hunsrück Slate. Paläontologische Zeitschrift, 55:237255.CrossRefGoogle Scholar
Sutton, M.D., Briggs, D. E. G., Siveter, D. J., Siveter, D. J., and Orr, P. J. 2002. The arthropod Offacolus kingi (Chelicerata) from the Silurian of Herefordshire, England: Computer based morphological reconstructions and phylogenetic affinities. Proceedings of the Royal Society, London B, 269:11951203.Google Scholar
Trinajstic, K., Marshall, C., Long, J. A., and Bifield, K. 2007. Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biology Letters, 3:197200.Google Scholar
Waterston, C. D. 1975. Gill structures in the Lower Devonian eurypterid Tarsopterella scotica. Fossils and Strata, 4:241254.Google Scholar
Wilby, P. R. and Briggs, D. E. G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios, 20:493502.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., and Wilkinson, M. 1995. The significance of fossils in understanding arthropod evolution. Verhandlungen der deutschen zoologischen Gesellschaft, 88, 203215.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33105. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. New York: Columbia University Press.Google Scholar
Witzke, B. J. 1994. Silurian stratigraphy in the Quad Cities Area, Iowa-Illinois. p. 316. In Bunker, B. J. (ed.), Paleozoic stratigraphy of the Quad-Cities Region, east-central Iowa, northwestern Illinois, Geological Society of Iowa Guidebook 59.Google Scholar
Witzke, B. J., Ludvigson, G. A., Mckay, R. M., Anderson, R. R., Bunker, B. J., Giglierano, J. D., Pope, J. P., Goettemoeller, A. E., and Slaughter, M. K. 1998. Bedrock Geology of Northeast Iowa: Digital Geologic Map of Iowa, Phase Two: Northeast Iowa. http://gsbdata.igsb.uiowa.edu/gsbpubs/pdf/OFM-1998-7.pdf).Google Scholar
Woodward, H. 1865. On a new Genus of Eurypterida from the Lower Ludlow Rocks of Leintwardine, Shropshire. Quarterly Journal of the Geological Society, 21:490492.Google Scholar