Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T05:05:58.971Z Has data issue: false hasContentIssue false

Revision of the anguine lizard Pseudopus laurillardi (Squamata, Anguidae) from the Miocene of Europe, with comments on paleoecology

Published online by Cambridge University Press:  14 July 2015

Jozef Klembara
Affiliation:
1Comenius University in Bratislava, Faculty of Natural Sciences, Department of Ecology, Mlynsk´ dolina B-1, 84215 Bratislava, Slovakia
Madelaine Böhme
Affiliation:
2Ludwig-Maximilians University Munich, Department of Earth and Environmental Sciences, Section of Paleontology, Richard-Wagner-Strasse 10, 80333 München, Germany
Michael Rummel
Affiliation:
3Naturmuseum Augsburg, Im Thäle, 386152 Augsburg, Germany

Abstract

A revision of the Early-Middle Miocene anguine, Pseudopus laurillardi (Lartet, 1851), is presented based on a detailed anatomical analysis of one newly discovered articulated specimen and numerous disarticulated cranial and postcranial elements from several localities in Germany, as well as on the restudy of the original skeletal material of Lartet. the articulated specimen represents the first record of an articulated anguine from the Neogene. We demonstrate that the contemporaneous anguine Propseudopus fraasii (= Pseudopus fraasi, Pseudopus moguntinus or Ophisaurus moguntinus) from Germany and elsewhere in Europe represents a junior synonym of P. laurillardi. Three species of Pseudopus can by discriminated in the Cenozoic of Eurasia: P. laurillardi (Early-Middle Miocene of Europe), P. pannonicus (Late Miocene-Middle Pleistocene of central and eastern Europe) and P. apodus (Late Pleistocene-Recent, from Eastern Europe to central Asia). Eleven morphological characters of the skull have been identified that distinguish Pseudopus laurillardi from P. pannonicus and P. apodus. Four of these characters regard the frontal and parietal bones, whereas all other characters regard the dentary and dentition. the genus Pseudopus represents the largest and most robust taxon in the subfamily Anguinae and first occurs in central Europe at the beginning of MN 4 (~18.5 Ma). in contrast to the extant species, P. apodus, the fossils P. laurillardi and P. pannonicus had a greater ecological plasticity and lived in various types of environments. the fossil remains of these taxa are most frequently found in localities characterized by sub-humid to humid climate, which may indicate that their preferential habitats include forested environments.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Aziz, H., Böhme, M., Rocholl, A., Zwing, A., Prieto, J., Wijbrans, J., Heissig, K., and Bachtadse, V.. 2008. Integrated stratigraphy of the Early to Middle Miocene Upper Freshwater Molasse in Lower Bavaria (Germany, Bavaria). International Journal of Earth Sciences, 97:115134.CrossRefGoogle Scholar
Augé, M. 1990a. La faune de lézards et d'amphisbaenes (Reptilia Squamata) du gisement de Domaal (Belgique, Éocène inférieur). Bulletin de l'Institut Royal des Sciences naturelles de Belgique, 60:161173.Google Scholar
Auge, A. M. 1990b. La faune de lézards et d'amphisbaenes de l'Éocène inférieur de Condé-en-Brie (France). Bulletin du Muséum nationale d'Histoire naturelle, 12:111141.Google Scholar
Augé, M. 1992. Une espèce nouvelle d'Ophisaurus (Lacertilia, Anguidae) de l'Oligocène des phosphorites du Quercy. Révision de la sous-famille des Anguinae. Paläontologische Zeitschrift, 66:159175.CrossRefGoogle Scholar
Augé, M. 2005. Évolution des lézards du Paléogene en Europe. Mémoires du Muséum national d'Histoire naturelle (Paris), 192:1369.Google Scholar
Augé, M. and Rage, J.-C.. 2000. Les squamates (Reptilia) du Miocène moyen de Sansan, p. 263313. In Ginsburg, L. (ed.), La faune miocène de Sansan et son environnment. Mémoires du Muséum national d'Histoire naturelle, 183.Google Scholar
Augé, M. and Smith, R.. 2009. An assemblage of Early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene-Oligocene transition. Zoological Journal of the Linnean Society, 155:148170.CrossRefGoogle Scholar
Austin, M. P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 137:101118.CrossRefGoogle Scholar
Bachmayer, F. and Mlynarski, M.. 1977. Bemerkungen über die fossilen Ophisaurus-Reste (Reptilia, Anguinae) von Österreich und Polen. Sitzungsberischte der Österreichischen Akademie der Wissenschaften, Mathem.-naturw. KI., Abt. I, 186:285299.Google Scholar
Bailon, S. H. A. and Blain, . 2007. Faunes de reptiles et changements climatiques en Europe Occidentale autour de la limite Plio-Pléistocène. Quaternaire, 18:5563.CrossRefGoogle Scholar
Bellairs, Ad'A. and Kamal, A. M.. 1981. The chondrocranium and the development of the skull in recent reptiles, p 1263. In Gans, C. (ed.), Biology of the Reptilia, Vol. 11, Morphology F. Academic Press, London and New York.Google Scholar
Blain, S. and Bailon, H. A.. 2006. Catalogue of Spanish Plio-Pleistocene amphibians and squamate reptiles from the Museu de Geologia de Barcelona. Trabajos del Museo Geologico Barcelona, 14:6180.Google Scholar
Boettger, O. 1875. Über die Gliederung der Cyrenenmergel-Gruppe im Mainzer Becken. Bericht über die Senckenbergische Naturforschende Geselschaft (1873–1874):50102.Google Scholar
Boettger, O. 1876/77. Die Fauna der Corbicula-Schichten im Mainzer Becken. Palaeontographica, 24:185219.Google Scholar
Böhme, M. 1999. Die miozäne Fossil-Lagerstätte Sandelzhausen. 16. Fisch- und Herpetofauna - Erste Ergebnisse. Neues Jahrbuch für Paläontologie und Geologie, Abhandlungen, 214:487495.CrossRefGoogle Scholar
Böhme, M. 2001. The oldest representative of a brown frog (Ranidae) from the Early Miocene of Germany. Acta Palaeontologica Polonica, 46:119124.Google Scholar
Böhme, M. 2002. Lower Vertebrates (Teleostei, Amphibia, Sauria) from the Karpatian of the Korneuburg Basin - palaeoecological, environmental and palaeoclimatical implications. Beiträge zur Paläontologie, 27:339354.Google Scholar
Böhme, M. 2003. Miocene Climatic Optimum: evidence from Lower Vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:389401.CrossRefGoogle Scholar
Böhme, M. 2004. Migration history of air-breathing fishes reveal Neogene atmospheric circulation pattern. Geology, 32:393396.CrossRefGoogle Scholar
Böhme, M. 2008. Ectothermic vertebrates (Teleostei, Allocaudata, Urodela, Anura, Testudines, Choristodera, Crocodylia, Squamata) from the Late Oligocene of Oberleichtersbach (Northern Bavaria, Germany). Courier Forschungs-Institut Senckenberg, 260:161183.Google Scholar
Böhme, M.in press. Ectothermic vertebrates (Osteichthyes, Allocaudata, Urodela, Anura, Crocodylia, Squamata) from the Miocene of Sandelzhausen (Germany, Bavaria): their implication for environmental reconstruction and palaeoclimate. Paläontologische Zeitschrift.Google Scholar
Böhme, M., Ilg, A., Ossig, A., and Küchenhoff, H.. 2006. New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe. Geology, 34:425428.CrossRefGoogle Scholar
Böhme, M., Bruch, A., and Selmeier, A.. 2007. The reconstruction of the Early and Middle Miocene climate and vegetation in the North Alpine Foreland Basin as determined from the fossil wood flora. Palaeogeography, Palaeoclimatology, Palaeoecology, 253:107130.CrossRefGoogle Scholar
Böhme, M., Ilg, A., and WiNKLHOFER, M.. 2008. Late Miocene “washhouse” climate in Europe. Earth and Planetary Science Letters, 275:393401.CrossRefGoogle Scholar
Böhme, M. A. and Ilg. 2008. fosFARbase, www.wahre-staerke.com/ (achieved January 2008)Google Scholar
Bolkay, S. J. 1913. Additions to the fossil herpetology of Hungary from the Pannonian and Preglacial period. Mitteilungen aus den Jahrbüchern der königlichen ungarischen geologischen Reischanstalt, 21:217230.Google Scholar
Bolliger, T. and Rummel, M.. 1994. Säugetierfunde aus Karstspalten -Die komplexe Genese am Beispiel eines Steinbruches bei Peterbuch, Südliche Frankenalb (Bayern). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 34:239264.Google Scholar
Boon, E. 1991. Die Cricetiden und Sciuriden der Oberen Süßwasser-Molasse von Bayerisch-Schwaben und ihre stratigraphische Bedeutung. , , 159 p.Google Scholar
Conrad, J. 2004. Skull, mandible, and hyoid of Shinisaurus crocodilurus Ahl (Squamata, Anguimorpha). Zoological Journal of the Linnean Society, 141:399434.CrossRefGoogle Scholar
Conrad, J. 2008. Phylogeny and systematic of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310:1182.CrossRefGoogle Scholar
Delfino, M. 2002. Erpetofaune Italiane del Neogene e del Quaternario. , , 382 p.Google Scholar
Doppler, G. 1989. Zur Stratigraphie der nördlichen Vorlandmolasse in Bayerisch-Schwaben. Geologica Bavarica, 94:83133.Google Scholar
Doppler, G., Fiebig, M., Meyer, R. K. F., et al. 2002. Geologische Landesaufnahme in der Planungsregion 10 Ingolstadt-Erläuterungen zur Geologischen Karte 1:100.000. Bayerisches Geologisches Landesamt, Munich, 172 p.Google Scholar
Doppler, G., Heissig, K., and Reichenbacher, B.. 2005. Die Gliederung des Tertiärs im süddeutschen Molassebecken. Newsletters on Stratigraphie, 41:359375.CrossRefGoogle Scholar
Estes, R. 1983. Sauria Terrestria, Amphisbaenia, p. 1249. In Wellnhofer, P. (ed.), Handbuch der Paläoherpetologie, part 10A. Gustav Fischer Verlag, Stuttgart.Google Scholar
Fahlbusch, V. 1964. Die Cricetiden (Mamm.) der Oberen Süßwassermolasse. Bayerische Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Abhandlungen, Neue Folge, 118:1136.Google Scholar
Fahlbusch, V. 1966. Cricetidae (Rodentia, Mamm.) aus der mittelmiozänen Spaltenfüllung Erkertshofen bei Eichstätt. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 6:109131.Google Scholar
Fejérváry-Lángh, A. M. 1923. Beiträge zu einer Monographie der fossilen Ophisaurier. Palaeontologia Hungarica, 1:123220.Google Scholar
Fürbringer, M. 1900. Zur Vergleichenden Anatomie Brustschulterapparatus und der Schultermuskeln. Janaische Zeitschrift für Naturwissenschaft, 34:215718.Google Scholar
Gauthier, J. 1982. Fossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, southeast Wyoming, and a revision of the Anguioidea. University of Wyoming, Contributions to Geology, 21:754.Google Scholar
Gerhardt, K. 1903. Ophisaurus ulmensis n. sp. aus dem Untermiozän von Ulm a. D. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 59:6771.Google Scholar
Gray, J. E. 1853. Descriptions of some undescribed species of reptiles collected by Dr. Joseph Hooker in the Khassia Mountains, East Bengal, and Sikkim Himalaya. Annals and Magazine of Natural History, 12(2):386392.CrossRefGoogle Scholar
Guisan, A. and Hofer, U.. 2003. Predicting reptile distributions at the mesoscale: relation to climate and topography. Journal of Biogeography, 30:12331243.CrossRefGoogle Scholar
Guisan, A. and Theurillat, J. P.. 2000. Equilibrium modeling of alpine plant distribution and climate change: how far we can go? Phytocoenologia, 30:353384.CrossRefGoogle Scholar
Harzhauser, M., Kroh, A., Mandic, O., Piller, W. E., Göhlich, U., Reuter, M., and Berning, B.. 2007. Biogeographic responses to geodynamics: A key study all around the Oligo-Miocene Tethyan Seaway. Zoologischer Anzeiger, 246:241256.CrossRefGoogle Scholar
Hecht, M. and Hoffstetter, R.. 1962. Note préliminaire sur les amphibiens et les squamates du Landinien supérieur et du Tongrien de Belgique. Bulletin de l'Institute Royal des Sciences Naturelles de Belgique, 38:130.Google Scholar
Heissig, K. 1978. Fossilführende Spaltenfüllungen Süddeutschlands und die Ökologie ihrer Huftiere. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 81:237288.Google Scholar
Heissig, K. 1997. Mammal faunas intermediate between the reference faunas of MN4 and MN6 from the Upper Freshwater Molasse of Bavaria, p. 537546. In Aguilar, J. P., Legendre, S. and Michaux, J. (eds.), Actes du Congres BiochroM'97. Mémoires et Travaux de l'Ecole pratique des Hautes Etudes, Institut de Montpellier, 21: 537–546.Google Scholar
Hilgendorf, F. 1883. Über eine fossile Eidechse (Propseudopus fraasii spec. nova) von Steinheim in Württemberg. Sitzungsberichte der Gesellschaft der naturforschenden Freunde zu Berlin, 1883:139142.Google Scholar
Hilgendorf, F. 1885. Die Steinheimer Gürtelechse Propseudopus fraasii. Zeitschrift der deutschen geologischen Geselschaft, 37:358376.Google Scholar
Hír, J., Kókay, J., and Venczel, M.. 2001. Middle Miocene molluscs and microvertebrata from Taşad (Bihor county, Romania). Acta Paleontologica Romaniae, 3:161172.Google Scholar
Hoffsteter, R. 1942. Sur les restes de Sauria du Nummulitique Europèen. Rapportés a la famille des Iguanidæ. Bulletin du Muséum d'Histoire Naturelle, 14:233240.Google Scholar
Ivanov, M. 2001. Changes in the composition of the European snake fauna during the Early Miocene and the Early/Middle Miocene transition. Paläontologische Zeitschrift, 74:563574.CrossRefGoogle Scholar
Jörg, E. 1965. Ophisaurus acuminatus nov. spec. (Anguidae, Rept.) von der pontischen Wirbeltier-Fundstätte Hewenegg Hegau. Beiträge zur naturkundlichen Forschungen in SW-Deutschland, 24:2130.Google Scholar
Klembara, J. 1979. Neue Funde der Gattungen Ophisaurus und Anguis (Squamata, Reptilia) aus dem Untermiozän Westböhmens (ČSSR). Vêstník Ústředního ústavu geologického, 54:163169.Google Scholar
Klembara, J. 1981. Beitrag zur Kenntniss der Subfamilie Anguinae. Acta Universitatis Carolinae – Geologica, 2:121168.Google Scholar
Klembara, J. 1985. Über eine Panzerschleiche aus dem Frühmiozän von Rott bei Bonn (Reptilia: Anguidae). Bonner zoologischen Beiträge, 36:99103.Google Scholar
Klembara, J. 1986a. New finds of the genus Ophisaurus (Reptilia, Anguidae) from the Miocene of Western Slovakia (Czechoslovakia). Acta Universitatis Carolinae – Geologica, Špinar vol. 2:187203.Google Scholar
Klembara, J. 1986b. Neue Funde der Gattungen Pseudopus und Anguis (Reptilia, Anguinae) aus drei Pliopleistozänen Lokalitäten. Geologicky zborník – Geologica Carpathica, 37:91106.Google Scholar
Kormos, T. 1911. Der pliozäne Knochenfund bei Polgárdi. Földtani Közlöni, 41:119.Google Scholar
Kuhn, O. 1940. Die Plakosauriden und Anguiden aus dem mittleren Eozän des Geiseltales. Nova Acta Leopoldina, 8:461486.Google Scholar
Kuhlemann, J., Dunkl, I., Brügel, A., Spiegel, C., and Frisch, W.. 2006. From source terrains of the Eastern Alps to the Molasse Basin: Detrital record of non-steady state exhumation. Tectonophysics, 413:301316.CrossRefGoogle Scholar
Lartet, E. 1851. Notice sur la colline de Sansan. Annuaire du département du Gers, Auch, 45 p.Google Scholar
Macey, J. R., Shulte, J. A. II, Larson, A., Tuniyev, B. S., Orlov, N., and Papenfuss, T. J.. 1999. Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Molecular Phylogenetics and Evolution, 12:250272.CrossRefGoogle ScholarPubMed
Made, J. van der. 1999. Intercontinental relationship Europe-Africa and the Indian Subcontintent, p. 457472. In Rössner, G. and Heissig, K. (eds.), The Miocene land mammals of Europe. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Merrem, B. 1820. Versuch eines Systems der Amphibien. Marburg, 191 p.CrossRefGoogle Scholar
Meszoely, Ch. A. M. and Haubold, H.. 1975. The status of the Middle Eocene Geiseltal limbless anguid lizards. Copeia, 1:3643.CrossRefGoogle Scholar
Miklas, P. 2004. The herpetofauna (Amphibia: Caudata, Anura; Reptilia: Scleroglossa) of the Upper Miocene locality Kohfidish, Burgerland, Austria. , , 183 p.Google Scholar
Mlynarski, M. 1962. Notes on the amphibian and reptilian fauna of the Polish Pliocene and Early Pleistocene. Acta Zoologica Cracoviensis, 7:177194.Google Scholar
Mlynarski, M., Szyndlar, Z., Estes, R., and Sanchiz, B.. 1982. Lower vertebrate fauna from the Miocene of Opole. Estudios geologica, 38:103119.Google Scholar
Mlynarski, M., Szyndlar, Z., Estes, R., and Sanchiz, B.. 1984. Amphibians and reptiles from the Pliocene locality of Weže II near Dzialoszyn (Polen). Acta Palaeontologica Polonica, 29:209226.Google Scholar
Obst, F. J. 2004. Pseudopus apodus (Pallas, 1775), p. 198199. In Gasc, J. P., Cabela, A., Crnobrnja-Isailovic, J., Dolmen, D., Grossenbacher, K., Haffner, P., Lescure, J., Martens, H., Martínez Rica, J. P., Maurin, H., Oliveira, M. E., Sofianidou, T. S., Veith, M. and Zuiderwijk, A. (eds.), Atlas of Amphibians and Reptiles in Europe. Réédition. Muséum national d'Histoire naturelle, Paris(Patrimoines naturels, 29).Google Scholar
Oelrich, T. M. 1956. The anatomy of the head of Ctenosaura pectinata (Iguanidae). Miscelaneous Publications, Museum of Zoology, University of Michigan, 94:1122.Google Scholar
Oppel, M. 1811. Die Ordnungen, Familien und Gattungen der Reptilien als Prodrom einer Naturgeschichte derselben. Joseph Lindauer, München.CrossRefGoogle Scholar
Pallas, P. S. 1775. Lacerta apoda descripta. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae, 19:435454.Google Scholar
Prieto, J. 2007. Kleinsäuger-Biostratigraphie und Paläoökologie des höheren Mittelmiozäns (MN 8) Bayerns: Spaltenfüllungen der Fränkischen Alb und Lokalitäten der Oberen Süßwassermolasse im Vergleich. , , 210 p.Google Scholar
Rage, J.-C. and Bailon, S.. 2005. Amphibians and squamate reptiles from the late early Miocene (MN 4) of Béon 1 (Montréal-du-Gers, southwestern France). Geodiversitas, 27:413441.Google Scholar
Rage, J.-C. and Augé, M.. 1993. Squamates from the Cainozoic of the Western part of Europe: a review. Revue de Paléobiologie, vol. spéc. 7:199216.Google Scholar
Rauscher, K. L. 1992. Die Echsen (Lacertilia, Reptilia) aus dem Plio-Pleistozän von Bad Deutsch-Altenburg, Niederösterreich. Beiträge zur Paläontologie, 17:81177.Google Scholar
Rieppel, O. 1980. The Phylogeny of Anguinomorph Lizards. Denkschriften der Schweizerischen Naturforschenden Gesellschaft, 94:186.Google Scholar
Roček, Z. 1984. Lizards (Reptilia: Sauria) from the Lower Miocene locality Dolnice (Bohemia, Czechoslovakia). Rozpravy Československé Akademie vied; řada matematickych a přírodních věd, 94:169.Google Scholar
Rummel, M. 1993. Neue fossilführende Karstfüllungen der Schwäbisch-Fränkischen Alb. Documenta naturae, 79:132.Google Scholar
Rummel, M. 1995. Cricetodon bolligeri n. sp. ein neuer Cricetide aus dem Obermiozän von Peterbuch bei Eichstätt. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 35:109123.Google Scholar
Rummel, M. 2000. Die Cricetodontini aus dem Miozän von Petersbuch, bei Eichstätt, Die Gattung Cricetodon Lartet 1851. Senckenbergiana lethaea, 80:149171.CrossRefGoogle Scholar
Schötz, M. 1993. Zwei Hamsterfaunen (Rodentia, Mammalia) aus der Niederbayerischen Molasse. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 33:155194.Google Scholar
Sullivan, R. M., Keller, T., and Habersetzer, J.. 1999. Middle Eocene (Geiseltalian) anguid lizards from Geiseltal and Messel, Germany. I. Ophisauriscus quadrupes Kuhn 1940. Courier Forschungsinstitut Senckenberg, 216:97129.Google Scholar
Venczel, M. 2006. Lizards from the Late Miocene of Polgárdi (W-Hungary). Nymphaea, Folia naturae Bihariae, 33:2538.Google Scholar
Venczel, M. 2007. Late Middle Miocene amphibians and reptiles from Subpiatra (Bihor district, Romania). Nymphaea, Folia naturae Bihariae, 3:3966.Google Scholar
Wegner, R. N. 1913. Tertiär und umgelagerte Kreide bei Oppeln (Oberschlesien). Palaeontographica, 60:175274.Google Scholar
Wu, W. 1982. Die Cricetiden (Mamalia, Rodentia) aus der Oberen Süßwasser-Molasse von Puttenhausen (Niederbayern). Zitteliana, 9:3780.Google Scholar
Ziegler, R. V. and Fahlbusch, . 1986. Kleinsäuger-Faunen aus der basalen Oberen Süßwasser-Molasse Niederbayerns. Zitteliana, 14:380.Google Scholar
Zug, G. R., Vitt, L. J., and Caldwell, J. P. (eds). 2001. Herpetology. Academic Press, San Diego.Google Scholar