Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-12T08:18:18.429Z Has data issue: false hasContentIssue false

Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland

Published online by Cambridge University Press:  14 July 2015

Guy M. Narbonne
Affiliation:
1Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada, 2School of Geosciences, Monash University, Melbourne, Victoria, 3800 Australia
Marc Laflamme
Affiliation:
1Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada, 3Presently at Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520-8109, U.S.A.
Carolyn Greentree
Affiliation:
4#1-249 Macdonnell St., Kingston, Ontario K7L 4C4, Canada
Peter Trusler
Affiliation:
3Presently at Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520-8109, U.S.A.

Abstract

Ediacaran fronds at Spaniard's Bay on the Avalon Peninsula of Newfoundland exhibit exquisite, three-dimensional preservation with morphological features less than 0.05 mm in width visible on the best preserved specimens. Most of the nearly 100 specimens are juvenile rangeomorphs, an extinct Ediacaran clade that numerically dominated the early evolution of complex multicellular life. Spaniard's Bay rangeomorphs are characterized by cm-scale architectural elements exhibiting self-similar branching over several fractal scales that were used as modules in construction of larger structures. Four taxa of rangeomorph fronds are present – Avalofractus abaculus n. gen. et sp., Beothukis mistakensis Brasier and Antcliffe, Trepassia wardae (Narbonne and Gehling), and Charnia cf. C. masoni Ford. All of these taxa exhibit an alternate array of primary rangeomorph branches that pass off a central stalk or furrow that marks the midline of the petalodium. Avalofractus is remarkably self similar over at least four fractal scales, with each scale represented by double-sided rangeomorph elements that were constrained only at their attachment point with the higher-order branch and thus were free to rotate and pivot relative to other branches. Beothukis is similar in organization, but its primary branches show only one side of a typical rangeomorph element, probably due to longitudinal branch folding, and the position of the individual branches was moderately constrained. Trepassia shows only single-sided branches with both primary and secondary branches emanating from a central stalk or furrow; primary branches were capable of minor pivoting as reflected in bundles of secondary branches. Charnia shows only single-sided primary branches that branch from a zigzag central furrow and that were firmly constrained relative to each. This sequence provides a developmental linkage between Rangea-type and Charnia-type rangeomorphs. Avalonian assemblages show a wide array of rangeomorph constructions, but later Ediacaran assemblages contain a lower diversity of rangeomorphs represented mainly by well-constrained forms.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antcliffe, J. B. and Brasier, M. D. 2008. Charnia at 50: Developmental models for Ediacaran fronds. Palaeontology, 51:1126.CrossRefGoogle Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland), p. 89. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. New York State Museum and Geological Survey Bulletin 463.Google Scholar
Bottjer, D. J. and Clapham, M. E. 2006. Evolutionary palaeoecology of Ediacaran benthic marine animals, p. 91114. In Xiao, S. and Kaufman, A. J. (eds.), Topics of Geobiology Vol. 27: Neoproterozoic Geobiology and Paleobiology. Springer, Netherlands.CrossRefGoogle Scholar
Bowring, S. A., Myrow, P., Landing, E., and Ramenzani, J. 2003. Geochronological constraints on terminal Neoproterozoic constraints and the rise of metazoans. Abstract 13045. NASA Astrobiology Institute (NAI) general meeting, special section IV: Early biosphere evolution, p. 113114.Google Scholar
Boynton, H. E. and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13(4):165182.Google Scholar
Brasier, M. D. and Antcliffe, J. 2004. Decoding the Ediacaran enigma. Science, 305:11151117.CrossRefGoogle ScholarPubMed
Brasier, M. D. and Antcliffe, J. 2009. Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. Journal of the Geological Society, London, 166:363384.CrossRefGoogle Scholar
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315:9295.CrossRefGoogle ScholarPubMed
Clapham, M. E. and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian “sea-pen” Rangea. Journal of Morphology, 252:315334.CrossRefGoogle ScholarPubMed
Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. John Hopkins Press, 344 p.Google Scholar
Flude, L. I. and Narbonne, G. M. 2008. Taphonomy and ontogeny of a multibranched Ediacaran fossil: Bradgatia from the Avalon Peninsula of Newfoundland. Canadian Journal of Earth Sciences, 45:10951109.CrossRefGoogle Scholar
Ford, T. D. 1958. Pre-Cambrian fossils from Charnwood Forest. Proceedings of the Yorkshire Geological Society, 3, Pt. 3(8):211217.CrossRefGoogle Scholar
Gehling, J. G. 1991. The case for Ediacaran roots to the metazoan tree. Geological Society of India Memoir, 20:181224.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.CrossRefGoogle Scholar
Gehling, J. G., Droser, M. L., Jensen, S., and Runnegar, B. N. 2005. Ediacaran organisms: relating form to function, p. 4367. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development, Proceedings of a symposium honouring Adolf Seilacher for his contributions to palaeontology in celebration of his 80th birthday. Peabody Museum of Natural History, Yale University.Google Scholar
Gehling, J. G. and Narbonne, G. M. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point Assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences, 44:367387.CrossRefGoogle Scholar
Germs, G. J. B. 1973. A reinterpretation of Rangea schneiderhoehni and the discovery of a related new fossil from the Nama Group, South West Africa. Lethaia, 6:110.CrossRefGoogle Scholar
Grazhdankin, D.V. and Seilacher, A. 2005. A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geological Magazine, 142:571582.CrossRefGoogle Scholar
Gürich, G. 1930. Über den Kuibis-Quarzit in Südwestafrika. Zeitschrift der Deutschen Geologischen Gesellschaft, 82:637.Google Scholar
Gürich, G. 1933. Die Kuibis-Foossilien der Nama-Formation von Südwestafrika. Palaontologische Zeitschrift, 15:137154.CrossRefGoogle Scholar
Hofmann, H. J., O'Brien, S. J., and King, A. F. 2008. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. Journal of Paleontology, 82: 136.CrossRefGoogle Scholar
Ichaso, A., Dalrymple, R. W., and Narbonne, G. M. 2007. Paleoenvironmental and basin analysis of the late Neoproterozoic (Ediacaran) upper Conception and St. John's groups, west Conception Bay, Newfoundland. Canadian Journal of Earth Sciences, 44:2541.CrossRefGoogle Scholar
Jenkins, R. J. F. 1985. The enigmatic Ediacaran (late Precambrian genus) Rangea and related forms. Paleobiology, 11:336355.CrossRefGoogle Scholar
Kaandorp, J. A. 1994. Fractal Modelling: Growth and Form in Biology. Springer-Verlag, Berlin, 208 p.CrossRefGoogle Scholar
King, A. F. 1988. Geology of the Avalon Peninsula, Newfoundland (parts of 1K, 1L, 1M, 1N, and 2 C). Newfoundland Department of Mines and Energy, Mineral Development Division, Map 88–01.Google Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2006. The Ediacaran Period: A new addition to the geologic time scale. Lethaia, 39:1330.CrossRefGoogle Scholar
Laflamme, M. and Narbonne, G. M. 2008a. Ediacaran fronds. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:162179.CrossRefGoogle Scholar
Laflamme, M. and Narbonne, G. M. 2008b. Competition in a Precambrian world: Palaeoecology and functional biology of Ediacaran fronds. Geology Today, 24:182187.CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78:827837.2.0.CO;2>CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., Greentree, C., and Anderson, M. M. 2007. Morphology and taphonomy of the Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286: 237257.Google Scholar
Misra, S. B. 1971. Stratigraphy and depositional history of the late Precambrian coelenterate-bearing rock, southeastern Newfoundland. Geological Society of America Bulletin, 82:979987.CrossRefGoogle Scholar
Myrow, P. M. 1995. Neoproterozoic rocks of the Newfoundland Avalon zone. Precambrian Research, 7:123136.CrossRefGoogle Scholar
Narbonne, G. M. 2004. Modular construction of Early Ediacaran complex life forms. Science, 305:11411144.CrossRefGoogle ScholarPubMed
Narbonne, G. M. 2005. The Ediacaran biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.CrossRefGoogle Scholar
Narbonne, G. M. and Gehling, J. G. 2003. Life after snowball: the oldest complex Ediacaran fossils. Geology, 31:2730.2.0.CO;2>CrossRefGoogle Scholar
Narbonne, G. M., Gehling, J. G., and Vickers-Rich, P. 2007. The misty coasts of Newfoundland, p. 5368. In Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. (eds.), The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. John Hopkins Press, Baltimore. 344 p.Google Scholar
Peterson, K. J., Cotton, J. A., Gehling, J. G., and Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society, B, 363:14351443.CrossRefGoogle ScholarPubMed
Pflug, H. D. 1970. Zur fauna der Nama-Schichten in Südwest-Afrika, II. Rangeidae, Bau und systematische Zugehörigkeit. Palaeontographica, A135:198231.Google Scholar
Pflug, H. D. 1972. Systematik der jung-präkambrischen Petalonamae. Paläontologische Zeitschrift, 46:5667.CrossRefGoogle Scholar
Richter, R. 1955. Die ältesten Fossilien Süd-Afrikas. Senckenbergiana Lethaea, 36:243289.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society of London, 149:607613.CrossRefGoogle Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.CrossRefGoogle Scholar
Shen, B., Dong, L., Xiao, S., and Kowalewski, M. 2008. The Avalon Explosion: Evolution of Ediacara morphospace. Science, 319:8184.CrossRefGoogle ScholarPubMed
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian paleobiology. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286: 355368.Google Scholar
Waggoner, B. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology, 43:104113.CrossRefGoogle ScholarPubMed
Williams, H. and King, A. F. 1979. Trepassey map area, Newfoundland. Geological Survey of Canada Memoir 389, 24 p.Google Scholar
Wood, D. A., Dalrymple, R.W., Narbonne, G. M., Gehling, J.G., and Clapham, M. E. 2003. Palaeoenviromental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Canadian Journal of Earth Sciences, 40:1375–139.CrossRefGoogle Scholar
Xiao, S. and Laflamme, M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution, 24:3140.CrossRefGoogle ScholarPubMed