Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-27T05:55:03.808Z Has data issue: false hasContentIssue false

The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms

Published online by Cambridge University Press:  28 February 2019

Sarah L. Sheffield
Affiliation:
School of Geosciences, University of South Florida, 4202 E. Fowler Ave, NES 107, Tampa, FL 33620, USA Department of Earth and Planetary Sciences, 1621 Cumberland Ave., University of Tennessee, Knoxville, Tennessee, 37996-1526, USA;
Colin D. Sumrall
Affiliation:
Department of Earth and Planetary Sciences, 1621 Cumberland Ave., University of Tennessee, Knoxville, Tennessee, 37996-1526, USA;

Abstract

The phylogenetic relationships of Paleozoic blastozoan echinoderms are poorly understood and many of the traditionally ascribed groups are likely polyphyletic. Diploporitans, those blastozoans with double pore (diplopore) respiratory structures, have never been placed within a rigorous phylogenetic framework, and their highly variable morphologies suggest that they do not represent a natural clade. A maximum parsimony phylogenetic analysis, spanning a wide range of diploporitan and related taxa, indicates that diplopore-bearing blastozoans are a polyphyletic grouping and, consequently, that diplopore respiratory structures have evolved more than once within the echinoderms. Constraint analyses indicate that a single diplopore-bearing clade bearing the traditionally defined Glyptosphaeritida, Sphaeronitida, Asteroblastida is less parsimonious than multiple diplopore-bearing clades inferred by the unconstrained analysis.

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelin, N.P., 1878, Iconographica crinoideorum in stratis Sueciae siluricus fossilum: Stockholm, Samson & Wallin, 62p.Google Scholar
Ausich, W.I., Kammer, T.K., Rhenberg, E.C., and Wright, D.F., 2015, Early phylogeny of crinoids within the pelmatozoan clade: Palaentology, v. 58, p. 937952.Google Scholar
Barrande, J., 1846, Notice préliminaire sur le Systéme Silurien et les trilobites de Bohême: Leipzig, C. L. Hirschfeld, 97 p.Google Scholar
Barrande, J., 1887. Classe des échinodermes, ordre des Cystidées, in Barrande, J., Počta, F., Perner, J., Waagen, W.H., and Jahn, J., eds., Système silurien du Centre de la Bohème. Part. I : Recherches paléontologiques, ouvrage posthume de feu Joachim Barrande publié par le Docteur W. Waagen: Éditions Gerhard, v. 7, p. 1233.Google Scholar
Bassler, R.S., 1950, New genera of American Middle Ordovician “Cystoidea”: Washington Academy of Science, Journal, v. 40, 273277.Google Scholar
Bather, F.A., 1900, The Pelmatozoa-Cystoidea, in Lankester, E.R., ed., A Treatise on Zoology, Pt. 3, The Echinodermata: London, Adam and Charles Back, p. 3877.Google Scholar
Bernard, F., 1895, Eléments de paleontology viii: Paris, J.B. Bailliére & Fils, 612 p.Google Scholar
Billings, E., 1858, On the Cystidae of the lower Silurian rocks of Canada: Geological Survey of Canada Decade 3, p. 974.Google Scholar
Bockelie, J.F., 1979, Celticystis n. gen., a gomphocystitid cystoid from the Silurian of Sweden: Geologiska Föreningen i Stockholm Förhandlingar, v. 101, p. 157166.Google Scholar
Branson, E.R., and Peck, R.E., 1940, A new cystoid from the Ordovician of Oklahoma: Journal of Paleontology, v. 14, p. 8992.Google Scholar
Breimer, A., and Macurda, D.B., 1972, The phylogeny of the fissiculate blastoids: Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, Erste Reeks 26, 390 p.Google Scholar
Brochu, C.A., and Sumrall, C.D., 2001, Phylogenetic nomenclature and paleontology: Journal of Paleontology, v. 75, p. 754757.Google Scholar
Callaway, C., 1877, On a new area of Upper Cambrian rocks in South Shropshire, with a description of new fauna: Quarterly Journal of the Geological Society of London, v. 33, p. 652672.Google Scholar
Chauvel, J., 1936, Note sur les Cystidées armoricaines: genre Calix et Pachycalix: Societe Geologique et Minéralogique de Bretagne, Comptes Rendus Sommaires, v. 2, p. 14.Google Scholar
Chauvel, J., 1941, Recherches sur les Cystoïdes et les Carpoïdes armoricaines: Mémoires de la Société Géologique et Minéralogique de Bretagne, v. 5, 286 p.Google Scholar
Clausen, S., 2004, New early Cambrian eocrinoids from the Iberian Chains (NE Spain) and their role in nonreefal benthic communities: Eclogae Geologicae Helveiae, v. 97, p. 371379.Google Scholar
Clausen, S., and Smith, A.B., 2005, Palaeoanatomy and biological affinities of a Cambrian deuterostome: Nature, v. 438, p. 351354.Google Scholar
Clausen, S., and Smith, A.B., 2008, Stem structure and evolution in the earliest pelmatozoan echinoderms: Journal of Paleontology, v. 82, p. 737748.Google Scholar
Dickson, J.A.D., 2002, Fossil echinoderms as a monitor of the Mg/Ca ratio of Phanerozoic oceans: Science, v. 298, p. 12221224.Google Scholar
Dickson, J.A.D., 2004, Echinoderm skeletal preservation: calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans: Journal of Sedimentary Research, v. 74, p. 355365.Google Scholar
Eichwald, E., 1840, Sur la système Silurien d l'Esthonie: St Petersburg, l'Académie de Médecine de St. Petersburg, 1840, vol. 1, p. 1222.Google Scholar
Eichwald, E., 1862, Asteroblastus stellatus, eine neue Sippe und Art untersilurischer Blastoideen von Pulkowa: Bulletin de la Societe Geologique de France, v. 19, p. 6264.Google Scholar
Foote, M., Paleozoic record of morphological diversity in blastozoan echinoderms: Proceedings of the National Academy of Sciences of the United States of America, v. 89, p. 73257329.Google Scholar
Frest, T.J., Strimple, H.L., and Paul, C.R.C., 2011, The North American Holocystites fauna (Echinodermata: Blastozoa: Diploporita): paleobiology and systematics: Bulletins of American Paleontology, v. 380, 141 p.Google Scholar
Gelman, A., 2013, Commentary: p values and statistical practice: Epidemiology, v. 24, p. 6972.Google Scholar
Gil Cid, M.D., and García-Rincón, J.M., 2012, Thecal (oral zone) elements in cystoids from Spain: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 264, p. 181190.Google Scholar
Guensburg, T.E., and Sprinkle, J., 2007, Phylogenetic implications of the Protocrinoida: blastozoans are not ancestral to crinoids: Annales de Palentologie, v. 93, p. 277290.Google Scholar
Guensburg, T.E., and Sprinkle, J., 2009, Solving the mystery of crinoid ancestry: new fossil evidence of arm origin and development: Journal of Paleontology, v. 83, p. 350364.Google Scholar
Guensburg, T.E., Blake, D.B., Sprinkle, J., and Mooi, R., 2016, Crinoid ancestry without blastozoans: Acta Palaentologica Polonica, v. 61, p. 253266.Google Scholar
Gyllenhaal, J.A., 1772, Beskrifning på de så kallade Crystall-äplen och kalkbollar, såsom petreficerade Djur af Echini genus, eller dess närmaste slägtingar: Kongl Svenska Vetenskaps Academiens Handlingar, v. 33, p. 239261Google Scholar
Haeckel, E., 1896, Die Amphorideen und Cystoideen: Beiträge zur Morphologie und Phylogenie der Echinodermen: Festchrift zum siebenzigsten Geburtstage von Carl Gegenbaur: Leipzig, W. Engelmann, 179 p.Google Scholar
Hall, J., 1861, Descriptions of new species of fossils: from the investigations of the survey: Report of the Superintendent of the Geological Survey Exhibiting the Progress of the Work. Madison, Wisconsin, p. 9–52.Google Scholar
Jaekel, O., 1899, Stammesgeschichte der Pelmatozoen I. Thecoidea und Cystoidea: Berlin, J. Springer, 422 p.Google Scholar
Jaekel, O., 1918, Phylogenie und System der Pelmatozoen: Palaeontologische Zeitschrift, v. 3, p. 1128.Google Scholar
Jell, P.A., 2010, Late Silurian echinoderms from the Yass Basin, New South Wales—the earliest holothurian body fossil and two diploporitan cystoids (Sphaeronitidae and Holocystitidae): American Association of Petroleum Geologists Memoir, v. 39, p. 2741.Google Scholar
Kammer, T.W., Sumrall, C.D., Zamora, S., Ausich, W.I., and Deline, B., 2013, Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms: PloS one, v. 8, e77989.Google Scholar
Kesling, R.V., 1967, Cystoidea, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part S, Echinodermata 1: Lawrence, Kansas, and Boulder, Colorado, University of Kansas Press and Geological Society of America, p. S85S262Google Scholar
Lefebvre, B., 2007, Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 245, p. 156199.Google Scholar
Lefebvre, B., and Fatka, O., 2003, Palaeogeographical and palaeoecological aspects of the Cambro-Ordovician radiation of echinoderms in Gondwanan Africa and peri-Gondwanan Europe: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 195, p. 7397.Google Scholar
Lefebvre, B., Sumrall, C.D., Shroat-Lewis, R.A., Reich, M., Webster, G.D., Hunter, A.W., Nardin, E., Rozhnov, S.V., Guensberg, T.E., and Touzeau, A., 2013, Palaeobiogeography of Ordovician echinoderms: Geological Society, London, Memoirs, v. 38, p. 173198.Google Scholar
Miller, S.A., 1889, North American Geology and Paleontology for the use of amateurs, students, and scientists: Cincinnati, Ohio, Western Methodist Book Concern, 664 p.Google Scholar
Mooi, R., and David, B., 1997, Skeletal homologies of echinoderms: The Paleontological Society Papers, v. 3, 305335.Google Scholar
Müller, J., 1854, Über den Bau der Echinodermen: Königlich Preussische Akademie der Wissenschaften, Abhandlungen, v. 1853, p. 125220.Google Scholar
Nardin, E., Lefebvre, B., David, B., and Mooi, R., 2009, La diversification des échinodermes primitifs au Paléozoïque inférieur: l'exemple des blastozoaires: Comptes-Rendus PalEvol, v. 8, p. 179188.Google Scholar
Neumayr, M., 1889, Die Stämme des Thierreiches, Wirbellose Thiere: Vienna and Prague, 603 p.Google Scholar
O'Malley, C.E., Ausich, W.I., and Chin, Y., 2016, Deep echinoderm phylogeny preserved in organic molecules from Paleozoic fossils: Geology, v. 44, 379382.Google Scholar
Parsley, R.L., 1982, Eumorphocystis, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (middle Ordovician) of Oklahoma: The University of Kansas, Paleontological Contributions, Monograph, v. 1, p. 106117.Google Scholar
Patterson, C., 1982, Morphological characters and homology, in Joysey, K.A., and Friday, A.E., eds., Systematics Association Special Volume 21: Problems of Phylogeny Reconstruction: New York, Academic Press, p. 2174.Google Scholar
Paul, C.R.C., 1968, Morphology and function of dichoporite pore-structures in cystoids: Palaeontology, v. 11, p. 697730.Google Scholar
Paul, C.R.C., 1971, Revision of the Holocystites Fauna (Diploporita) of North America: Fieldiana Geology, v. 24, p. 1166.Google Scholar
Paul, C.R.C., 1972, Morphology and function of exothecal pore-structures in cystoids: Palaeontology, v. 15, p. 128.Google Scholar
Paul, C.R.C., 1988, The phylogeny of the cystoids, in Paul, C.R.C., and Smith, A.B., eds., Echinoderm Phylogeny and Evolutionary Biology: Oxford, Clarendon Press, p. 199213.Google Scholar
Rahman, I.A., and Zamora, S., 2009, The oldest cinctan carpoid (stem-group Echinodermata), and the evolution of the water vascular system: Zoological Journal of the Linnean Society, v. 157, p. 420432.Google Scholar
Robison, R.A., 1965, Middle Cambrian eocrinoids from western North America: Journal of Paleontology, v. 39, p. 355364.Google Scholar
Rouault, M., 1851, Fossiles du terrain silurien: Bulletin de la Societe Geologique de France, v. 8, p. 358399.Google Scholar
Sheffield, S.L., and Sumrall, C.D., 2015, A new interpretation of the oral plating patterns of the Holocystites Fauna, in Zamora, S. and Rábano, I., eds., Progress in Echinoderm Palaeobiology: Cuademos del Museo Geominero, 19. Instituto Geológico y Minero de España, Madrid, p. 159162.Google Scholar
Sheffield, S.L., and Sumrall, C.D., 2017, Generic revision of the Holocystitidae of North America (Diploporita: Echinodermata) based on universal elemental homology: Journal of Paleontology, v. 91, p. 755766. doi:10.1017/jpa.2016.159Google Scholar
Sheffield, S.L., and Sumrall, C.D., 2019, A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa: Echinodermata) and its bearing on the evolution of early crinoids: Palaeontology v. 62, p. 163173. doi: 10.1111/pala.12396Google Scholar
Sheffield, S.L., Ausich, W.I., and Sumrall, C.D., 2017, Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: implications for evolutionary and biogeographic patterns: Canadian Journal of Earth Sciences, v. 55, p. 17. https://doi.org/10.1139/cjes-2017-0160Google Scholar
Sprinkle, J., 1973, Blastozoan echinoderms: Cambridge, Harvard University Museum of Comparative Zoology Special Publication, 283p.Google Scholar
Sprinkle, J., and Bell., B.M., 1978, Paedomorphosis in edrioasteroid echinoderms: Paleobiology, v. 4, p. 8288.Google Scholar
Sprinkle, J., and Wahlman, G.P., 1994, New echinoderms from the Early Ordovician of west Texas: Journal of Paleontology, v. 68, p. 324388.Google Scholar
Sumrall, C.D., 1997, The role of fossils in the phylogenetic reconstruction of Echinodermata, in Waters, J.A., and Maples, C.G., eds., Geobiology of Echinoderms: Paleontological Society Paper, v. 3, p. 267288.Google Scholar
Sumrall, C.D., 2010, A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms, in Harris, L.G., Böttger, S.A., Walker, C.W., and Lesser, M.P., eds., Echinoderms: Durham, London, CRC Press, p. 269276.Google Scholar
Sumrall, C.D. 2015. Understanding the oral area of derived stemmed echinoderms, in Zamora, S. and Rábano, I., eds. Progress in Echinoderm Palaeobiology: Cuademos del Museo Geominero, 19. Instituto Geológico y Minero de España, Madrid, p. 169173.Google Scholar
Sumrall, C.D., 2017. New insights concerning homology of the oral region and ambulacral system plating of pentaradial echinoderms: Journal of Paleontology, v. 91, p. 604617.Google Scholar
Sumrall, C.D., and Gahn, F.J., 2006, Morphological and systematic reinterpretation of two enigmatic edrioasteroids (Echinodermata) from Canada: Canadian Journal of Earth Sciences, v. 43, p. 497507.Google Scholar
Sumrall, C.D., and Sprinkle, J., 1995, Plating and pectinirhombs of the Ordovician rhombiferan Plethoschisma: Journal of Paleontology, v. 69, p. 772778.Google Scholar
Sumrall, C.D., and Waters, J.A., 2012, Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived Blastozoa: Journal of Paleontology, v. 86, p. 956972.Google Scholar
Sumrall, C.D., Brett, C.E., Dexter, T.A., and Bartholomew, A., 2009, An enigmatic blastozoan echinoderm fauna from central Kentucky: Journal of Paleontology, v. 83, p. 739749.Google Scholar
Sumrall, C.D., Deline, B., Colmenar, J., Sheffield, S.L., and Zamora, S., 2015, New data on late Ordovician (Katian) echinoderms from Sardinia, Italy), in Zamora, S., and Rábano, I., eds., Progress in Echinoderm Palaeobiology, Cuademos del Museo Geominero, 19. Instituto Geológico y Minero de España, Madrid, p. 175178.Google Scholar
Swofford, D.L., 2003, PAUP* Version 4.0.b10 Phylogenetic Analysis Using Parsimony and Other Methods: Sunderland, MA, Sinauer Associates.Google Scholar
Templeton, A.R., 1983, Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes: Evolution, v. 37, p. 221244.Google Scholar
Ulrich, E.O., and Kirk, E., 1921, Amecystis, a new genus of Ordovician Cystidea: Proceedings of the Biological Society of Washington, v. 34, p. 147148.Google Scholar
Volborth, A. von, 1846, Über die russichen Spaheroniten, eingeleitet durch einige Betrachtungen über die Arme der Cystideen: Verhandlungen der Russisch-Kaiserlichen Mineralogischen Gesellschaft zu St. Petersburg, 1845–1846, p. 161198.Google Scholar
Zamora, S., and Smith, A.B., 2008, A new middle Cambrian stem-group echinoderm from Spain: paleobiological implications of a highly asymmetric cinctan: Acta Palaeontologica Polonica, v. 53, p. 207221.Google Scholar
Zamora, S., and Rahman, I.A., 2014, Deciphering the early evolution of echinoderms with Cambrian fossils: Palaentology, v. 57, p. 11051119.Google Scholar
Zamora, S., Lefebvre, B., Àlvaro, J.J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J.-P., Nardin, E., Parsley, R., Rozhnov, S.V., Sprinkle, J., Sumrall, C.D., Vizcaino, D., and Smith, A.B., 2013, Cambrian echinoderm diversity and palaeobiogeography: Geological Society, London, Memoirs, v. 38, p. 157171.Google Scholar
Zamora, S., Sumrall, C.D., Zhu, X-J., and Lefebvre, B., 2016, A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata): Geological Magazine, v. 154, p. 111.Google Scholar