Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-20T03:59:47.590Z Has data issue: false hasContentIssue false

Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen

Published online by Cambridge University Press:  14 July 2015

Andrew H. Knoll
Affiliation:
1Botanical Museum, Harvard University, Cambridge, Massachusetts 02138
Keene Swett
Affiliation:
2Department of Geology, University of Iowa, Iowa City 52242
Elizabeth Burkhardt
Affiliation:
1Botanical Museum, Harvard University, Cambridge, Massachusetts 02138

Abstract

The Upper Proterozoic (ca. 700–800 Ma old) Backlundtoppen Formation, northeastern Spitsbergen, preserves an abundant and varied record of ancient microbial life. Five distinctive microfossil assemblages occur in five equally distinct sedimentary settings; differences among the assemblages appear to reflect original ecological heterogeneity, although taphonomic circumstance may contribute to some distinctions. Microfossil assemblages occur in: oncolites, oolites, and pisolites; stratiform stromatolites and associated intraclastic rudites; partially silicified micrites; and siltites interbedded with quartz arenites. Individual assemblages contain one to eight differentiable taxa; a minimum of 17 distinct populations is present in the formation as a whole. Additional microbial community diversity can be inferred from the presence of domal, columnar, pseudocolumnar, and coniform stromatolites, none of which contains microfossils. On the basis of macrostructure, four stromatolite types appear to be present, but only three distinct mat-building communities can be inferred from microstructural features. Eohyella elongata n. sp., a euendolithic cyanobacterium found in silicified pisolites, is described as new.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertrand-Sarfati, J., and Moussine-Pouchkine, A. 1985. Evolution and environmental conditions of Conophyton–Jacutophyton associations in the Atar dolomite (upper Proterozoic, Mauritania). Precambrian Research, 29:207234.CrossRefGoogle Scholar
Bornet, E., and Flahault, C. 1888. Notes sur deux nouveaux genres d'algues perforantes. Journale de Botanie, 2:161165.Google Scholar
Bloeser, B. 1985. Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. Journal of Paleontology, 59:741765.Google Scholar
Butterfield, N., Knoll, A. H., and Swett, K. 1988. Exceptional preservation of fossils in Upper Proterozoic shale. Nature, 334:424427.Google Scholar
Campbell, S. E. 1982. Precambrian endoliths discovered. Nature, 299:429431.CrossRefGoogle Scholar
Castenholz, R. W. 1984. Habitats of Chloroflexus and related organisms, p. 196200. In Klug, M. L. and Reddy, C. A. (eds.), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, D.C.Google Scholar
Cohen, Y. 1984. The Solar Lake cyanobacterial mats: strategies of photosynthetic life under sulfide, p. 133148. In Cohen, Y., Castenholz, R. W., and Halvorson, H. O. (eds.), Microbial Mats: Stromatolites. Alan R. Liss, New York.Google Scholar
Derry, L. A., Keto, L. S., Jacobsen, S. B., Knoll, A. H., and Swett, K. 1989. Sr isotopic variations of Upper Proterozoic carbonates from East Greenland and Svalbard. Geochimica et Cosmochimica Acta, in press.CrossRefGoogle Scholar
Fairchild, I. J., and Hambrey, M. J. 1984. The Vendian succession of northeastern Spitsbergen: petrogenesis of a dolomite–tillite association. Precambrian Research, 26:111167.Google Scholar
Geitler, L. 1932. Cyanophyceae von Europa unter Berücksichtigung der andere Kontinente. Band 14, Dr. L. Rabenhorst's Kryptogamen–Flora von Deutschland, Österreich und der Schweiz, 1196 p. 1985 reprint by Koeltz Scientific Books, Koenigstein, West Germany.Google Scholar
Golovanov, N. P. 1967. Stromatolites of the region of Murchisonfjorden (Nordaustlandet), p. 620. In Sokolov, V. N. (ed.), Materialy po stratigrafii Spitsbergena. Navcna issledovatelskij institut geologii Arktiki, Trudy 172, Leningrad(in Russian).Google Scholar
Golovanov, N. P., and Raaben, M. E. 1967. Analogues of the Upper Riphean in the Spitsbergen archipelago. Doklady Akademii Nauk SSSR, 173:11411144.Google Scholar
Golubic, S., and Focke, J. W. 1978. Phormidium hendersonii Howe: identity and significance of a modern stromatolite building microorganism. Journal of Sedimentary Petrology, 48:751764.Google Scholar
Green, J., Knoll, A. H., and Swett, K. 1988. Microfossils in oolites and pisolites from the Upper Proterozoic Eleonore Bay Group, central East Greenland. Journal of Paleontology, 62:835852.Google Scholar
Harland, W. B., and Gayer, R. A. 1972. The Arctic Caledonides and earlier oceans. Geological Magazine, 109:289314.Google Scholar
Høeg, O. A. 1942. The Downtonian and Devonian flora of Spitsbergen. Norges Svalbard-og Ishavs–Undersökelser Skrifter, 83:1228.Google Scholar
Hofmann, H. J. 1987. Precambrian biostratigraphy. Geoscience Canada, 14:135154.Google Scholar
Horodyski, R. J., and vonder Haar, S. P. 1975. Recent calcareous stromatolites from Laguna Mormona (Baja California) Mexico. Journal of Sedimentary Petrology, 45:894906.Google Scholar
Horodyski, R. J., and Donaldson, J. A. 1980. Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research, 11:125159.CrossRefGoogle Scholar
Jankauskas, T. V., Mikhailova, N. S., and German, T. N. 1987. The fifth All-Union conference on the Precambrian microfossils of the USSR. Isvestiya Akademii Nauk SSSR, seriya geologicheskaya, 9:137139(in Russian).Google Scholar
Knoll, A. H. 1982a. Microorganisms from the late Precambrian Draken Conglomerate, Ny Friesland, Spitsbergen. Journal of Paleontology, 56:755790.Google Scholar
Knoll, A. H. 1982b. Microfossil based biostratigraphy of the Hecla Hoek sequence of Nordaustlandet, Svalbard. Geological Magazine, 119:269279.Google Scholar
Knoll, A. H. 1984. Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58:131162.Google Scholar
Knoll, A. H. 1985. The distribution and evolution of microbial life in the late Proterozoic Era. Annual Review of Microbiology, 39:391417.CrossRefGoogle ScholarPubMed
Knoll, A. H.Barghoorn, E. S., and Golubic, S. 1975. Paleopleurocapsa wopfnerii gen. et sp. nov., a late Precambrian alga and its modern counterpart. Proceedings, National Academy of Sciences, USA, 72:24882492.Google Scholar
Knoll, A. H., and Calder, S. 1983. Microbiotas of the late Precambrian Ryssö Formation, Nordaustlandet, Svalbard. Palaeontology, 26:467496.Google Scholar
Knoll, A. H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10:115151.Google Scholar
Knoll, A. H., Hayes, J. M., Kaufman, J., Swett, K., and Lambert, I. 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 321:832838.CrossRefGoogle ScholarPubMed
Knoll, A. H., and Swett, K. 1985. Micropaleontology of the Late Proterozoic Veteranen Group, Spitsbergen. Palaeontology, 28:451473.Google Scholar
Knoll, A. H., and Swett, K. 1987. Micropaleontology across the Precambrian-Cambrian boundary in Spitsbergen. Journal of Paleontology, 61:898926.CrossRefGoogle Scholar
Knoll, A. H., and Vidal, G. 1980. Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 102:207211.Google Scholar
Krumbein, W. E., and Giele, C. 1979. Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. Sedimentology, 26:593604.Google Scholar
Krylov, I. N. 1975. Riphean and Phanerozoic stromatolites in the U.S.S.R. Trudy geologicheskogo institute, Akademiya Nauk SSSR, 274, 243 p. (in Russian).Google Scholar
Krylov, I. N. 1976. Approaches to the classification of stromatolites, p. 3143. In Walter, M. R. (ed.), Stromatolites. Elsevier, Amsterdam.Google Scholar
LeCampion-Alsumard, T., and Golubic, S. 1985. Hyella caespitosa Bornet et Flahault and Hyella balani Lehman (Pleuroscapsales, Cyanophyta): a comparative study. Archiv für Hydrobiologie, Supplementband, 71:119148.Google Scholar
Licari, G. R. 1978. Biogeology of the pre-Phanerozoic Beck Spring Dolomite of eastern California. Journal of Paleontology, 52:767792.Google Scholar
Lukas, K. J. 1978. Depth distribution and form among common microboring algae from the Florida continental shelf. Geological Society of America, Abstracts with Programs, 10:448.Google Scholar
Milstein, V. E., and Golovanov, N. P. 1979. Upper Precambrian microphytolites and stromatolites from Svalbard. Norsk Polarinstitutt Skrifter, 167:219224.Google Scholar
Nathorst, A. G. 1894–1914. Zur fossiler Flora der Polarländer, Teil 1 (in four parts). P. A. Norstedt & Söner, Stockholm, 110 p.Google Scholar
Nathorst, A. G. 1911. On the value of fossil floras of Arctic regions as evidence of geological climates. Geological Magazine, 48:217225.Google Scholar
Nathorst, A. G. 1920. Zur Kulmflora Spitzbergens. Zur fossilen Flora der Polarländer, Teil 2, Lieferung 1. P. A. Norstedt & Söner, Stockholm, 45 p.Google Scholar
Nautiyal, A. C. 1983. Algonkian (Upper to Middle) micro-organisms from the Semri Group of Son Valley (Mirzapur District), India. Geoscience Journal, 4:169198.Google Scholar
Pedersen, K. R. 1970. Late Precambrian microfossils from Peary Land. Rapport, Grønlands Geologiske Undersogelse, 28:1617.Google Scholar
Pia, J. 1927. Thallophyta, p. 31136. In Hirmer, M. (ed.), Handbuch der Paläobotanik, Abschnitt 1. Oldenbourg, Munich.Google Scholar
Pierce, D., and Cloud, P. 1979. New microbial fossils from ∼1.3 billion-year-old rocks from eastern California. Geomicrobiological Journal, 1:295309.Google Scholar
Potts, M., and Whitton, B. A. 1980. Vegetation of the intertidal zone of the lagoon of Aldabra, with particular reference to the photosynthetic prokaryotic communities. Proceedings, Royal Society, London, 208B:1355.Google Scholar
Preiss, W. V. 1976. Basic field and laboratory methods for the study of stromatolites, p. 514. In Walter, M. R. (ed.), Stromatolites. Elsevier, Amsterdam.Google Scholar
Raaben, M. Ye., and Zabrodin, V. Ye. 1969. Biostratigraphic characteristics of the Upper Riphean in the Arctic. Doklady Akademii Nauk, SSSR, 184:676679.Google Scholar
Raaben, M. Ye., and Zabrodin, V. Ye. 1972. Problematical algae of the upper Riphean (stromatolites, oncolites). Trudy geologicheskogo instituta, Akademiya Nauk SSSR 274, 130 p. (in Russian).Google Scholar
Schaub, H. P. 1950. On the pre-Cambrian to Cambrian sedimentation in NE-Greenland. Meddelelser om Grønland, 114:150.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, late Precambrian, central Australia. Journal of Paleontology, 42:651688.Google Scholar
Schopf, J. W., and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45:925960.Google Scholar
Schopf, J. W., Dolnik, T. A., Krylov, I. N., Mendelson, C. V., Nazarov, B. B., Nyberg, A. V., Sovietov, Yu. K., and Yakshin, M. S. 1977. Six new stromatolitic microbiotas from the Proterozoic of the Soviet Union. Precambrian Research, 4:269284.CrossRefGoogle Scholar
Schopf, J. W., Dolnik, T. A., Krylov, I. N., Mendelson, C. V., Nazarov, B. B., Nyberg, A. V., Sovietov, Yu. K., Ford, T. D., and Breed, W. J. 1973. Microorganisms from the late Precambrian of the Grand Canyon, Arizona. Science, 179:13191321.CrossRefGoogle ScholarPubMed
Schweitzer, H. J. 1974. Die “tertiären” Koniferen Spitzbergens. Palaeontographica, 149B:189.Google Scholar
Serebryakov, S. N. 1976. Biotic and abiotic factors controlling the morphology of Riphean stromatolites, p. 321336. In Walter, M. R. (ed.), Stromatolites. Elsevier, Amsterdam.Google Scholar
Sergeyev, V. N. 1984. Microfossils in Upper Riphean silicified columnar stromatolites from the Turukhansk area. Doklady Akademii Nauk, SSSR, 278:436439(in Russian).Google Scholar
Southgate, P. N. 1986. Depositional environment and mechanism of preservation of microfossils, upper Proterozoic Bitter Springs Formation, Australia. Geology, 14:683686.Google Scholar
Stolz, J. F. 1983. Fine structure of the stratified microbial community at Lagoona Figueroa, Baja California, Mexico. I. Methods of in situ study of the laminated sediments. Precambrian Research, 20:479492.Google Scholar
Swett, K., and Knoll, A. H. 1985. Stromatolitic bioherms and microphytolites from the Late Proterozoic Draken Conglomerate Formation, Spitsbergen. Precambrian Research, 28:327347.Google Scholar
Swett, K., and Knoll, A. H. 1988. Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen. Sedimentology, in press.Google Scholar
Vidal, G. 1979. Acritarchs from the Upper Proterozoic and Lower Cambrian of East Greenland. Bulletin, Grønlands geologiske Undersogelse, 134:155.Google Scholar
Walter, M. R., Krylov, I. N., and Muir, M. D. 1988. Stromatolites from middle and late Proterozoic sequences in the McArthur and Georgina basins and the Mount Isa Province, Australia. Alcheringa, 12:79106.Google Scholar
Wilson, C. B. 1961. The Upper Middle Hecla Hoek rocks of Ny Friesland, Spitsbergen. Geological Magazine, 98:89116.Google Scholar
Zhang, Y. 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (early Sinian: Riphean), Hebei, China. Journal of Paleontology, 55:485506.Google Scholar
Zhang, Y., and Golubic, S. 1987. Endolithic microfossils (Cyanophyta) from Early Proterozoic stromatolites, Hebei, China. Acta Micropalaeontologica Sinica, 4:112.Google Scholar