Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T13:10:37.096Z Has data issue: false hasContentIssue false

Paleoecologic and taxonomic implications of Sphenothallus and Sphenothallus-like specimens from Ohio and areas adjacent to Ohio

Published online by Cambridge University Press:  14 July 2015

Maxwell Lewis Neal
Affiliation:
The Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, Ohio 44106-1767, Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106,
Joseph T. Hannibal
Affiliation:
The Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, Ohio 44106-1767,

Abstract

Sphenothallus and fossils similar to Sphenothallus are found in Ordovician, Devonian, and Mississippian rock units in Ohio and adjacent states and provinces. Although the Ordovician of Québec, Ontario, and Indiana has yielded parts of tubes, Ordovician specimens from southwest Ohio and nearby areas consist almost entirely of holdfasts on hardgrounds and shelly fossils. Sphenothallus is abundant in the Chagrin Shale (Famennian) of northeast Ohio where it is found in about four percent of concretions that contain identifiable fossils. The Chagrin specimens, usually parts of tubes, are occasionally preserved three-dimensionally. The rate of distal expansion of Chagrin Sphenothallus tubes varies intraspecifically; thus, this rate cannot be used to distinguish species. Some Chagrin specimens are attached to larger, conspecific specimens and to articulate brachiopods. Brachiopods have also been found attached to Chagrin Sphenothallus. Bedford-Berea sequence (Famennian) specimens from northern Kentucky and Meadville Member (Kinderhookian or Osagian) specimens from the Cuyahoga Formation of northeast Ohio are usually preserved as flattened tubes. In both occurrences tubes are similar in width, indicating that individuals in each assemblage are probably the same age. Meadville tubes possess characteristics diagnostic of Sphenothallus, but Bedford-Berea specimens, which lack longitudinal thickenings and exhibit little tube tapering, cannot be assigned to Sphenothallus sensu strictu.

Sphenothallus was a gregarious, opportunistic species, tolerant of dysaerobic conditions and able to colonize environments ranging from hardgrounds to soft, muddy sea bottoms. No distinct branching was observed among the Chagrin, Bedford-Berea, or Meadville specimens, suggesting that larval dispersal was the primary mode of reproduction for the genus.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, L. E. 1993. Exceptionally preserved conulariids from the Conularienschichten, fossil-lagerstätten in the Devonian of Bolivia, p. 7791. In Suárez-Soruco, R. (ed.), Fósiles y Facies de Bolivia. Vol. 2, Invertebrados y Paleobotanica. Revista Técnica de YPFB, 13-14(1-4), Santa Cruz, Bolivia.Google Scholar
Babcock, L. E., Feldmann, R. M., Wilson, M. T., and Suárez-Riglos, M. 1987. Devonian conulariids of Bolivia. National Geographic Research, 3:210231.Google Scholar
Babcock, L. E., Wegweiser, M. D., Wegweiser, A. E., McKenzie, S. C., and Ostrander, A. 1998. Marginal-marine lithofacies, biofacies, and ichnofacies, Chadakoin and Venango Formations (Upper Devonian), Union City Dam, Erie County, Pennsylvania, p. 2632. In Harper, J. (ed.), 63rd Annual Field Conference of Pennsylvania Geologists: Geotectonic Environment of the Lake Erie Crustal Block. Field Conference of Pennsylvania Geologists, Harrisburg.Google Scholar
Bartels, C., Briggs, D. E. G., and Brassel, G. 1998. The Fossils of the Hunsrück Slate: Marine Life in the Devonian. Cambridge University Press, Cambridge, 309 p.Google Scholar
Bodenbender, B. E., Wilson, M. A., and Palmer, T. J. 1989. Paleoecology of Sphenothallus on an Upper Ordovician hardground. Lethaia, 22:217225.CrossRefGoogle Scholar
Bolton, T. E. 1994. Sphenothallus angustifolius Hall, 1847 from the lower Upper Ordovician of Ontario and Québec. Geological Survey of Canada Bulletin, 479:111.Google Scholar
Choi, D. K. 1990. Sphenothallus (“Vermes”) from the Tremadocian Dumugol Formation, Korea. Journal of Paleontology, 64:403408.CrossRefGoogle Scholar
Clarke, J. M. 1913. Fosseis Devonianos do Paraná. Monographias do serviço geologico e mineralogico do Brasil, Volume I, Rio de Janeiro, 353 p., 27 pls.Google Scholar
Ettensohn, F. R. 1992. The Strodes Creek Member of the Lexington Limestone: an example of probable synsedimentary structural influence, p. 7174. In Ettensohn, F. R. (ed.), Changing interpretations of Kentucky geology—layer-cake, facies, flexure, and eustacy. Ohio Geological Survey Miscellaneous Report no. 5.Google Scholar
Fauchald, K., Stürmer, W., and Yochelson, E. L. 1986. Sphenothallus “Vermes” in the Early Devonian Hunsrück Slate, West Germany. Paläontologische Zeitschrift, 60:5764.CrossRefGoogle Scholar
Feldmann, R. M., Hannibal, J. T., and Babcock, L. E. 1986. Fossil worms from the Devonian of North America (Sphenothallus) and Burma (“Vermes”) previously identified as phyllocarid arthropods. Journal of Paleontology, 60:341346.CrossRefGoogle Scholar
Frey, R. C. 1989. Paleoecology of a well-preserved nautiloid assemblage from a Late Ordovician shale unit, southwestern Ohio. Journal of Paleontology, 63:604620.CrossRefGoogle Scholar
Girty, G. H. 1911. The fauna of the Moorefield Shale of Arkansas. U.S. Geological Survey Bulletin 439, 148 p.Google Scholar
Hall, J. 1847. Palaeontology of New-York: Volume I, containing descriptions of the organic remains of the lower division of the New-York system. C. Van Benthuysen, Albany, 338 p., 87 pls.Google Scholar
Hannibal, J. T., Feldmann, R. M., and Ian Rolfe, W. D. 1993. Phyllocarid crustaceans from the Devonian of Bolivia, p. 5969. In Suárez-Soruco, R. (ed.), Fósiles y Facies de Bolivia. Vol. 2, Invertebrados y Paleobotanica. Revista Técnica de YPFB, 13-14(1-4), Santa Cruz, Bolivia.Google Scholar
Kobayashi, T. 1934. The Cambro-Ordovician formations and faunas of South Chosen. Paleontology. Part II, Lower Ordovician faunas. Journal of the Faculty of Science, Imperial University of Tokyo, Section II, 3:521585.Google Scholar
Larsen, G. E. 1998. Generalized correlation chart of bedrock units in Ohio. Ohio Geological Survey Open-file Report 98-2.Google Scholar
Lierman, R. T., and Mason, C. E. 1992. Farmers, Nancy and Cowbell Members of the Borden Formation (Lower Mississippian) along Kentucky State Highway 546 in northeastern Kentucky, p. 138142. In Ettensohn, F. R. (ed.), Changing interpretations of Kentucky geology—layer-cake, facies, flexure, and eustacy. Ohio Geological Survey Miscellaneous Report no. 5.Google Scholar
Lierman, R. T., Mason, C. E., Pashin, J. C., and Ettensohn, F. R. 1992. Cleveland Shale-through-lower Borden sequence (Devonian-Mississippian) and implicatons, p. 7788. In Ettensohn, F. R. (ed.), Changing interpretations of Kentucky geology—layer-cake, facies, flexure, and eustacy. Ohio Geological Survey Miscellaneous Report no. 5.Google Scholar
Mason, C., and Yochelson, E. L. 1985. Some tubular fossils (Sphenothallus: “Vermes”) from the middle and late Paleozoic of the United States. Journal of Paleontology, 59:8595.Google Scholar
M'Coy, F. 1844. A synopsis of the characters of the Carboniferous limestone fossils of Ireland. Williams and Norgate, London, 274 p.CrossRefGoogle Scholar
Mitchell, C. E., Wilson, M. A., and St. John, J. M. 1993. In situ crustoid graptolite colonies from an Upper Ordovician hardground, southwestern Ohio. Journal of Paleontology, 67:10111016.CrossRefGoogle Scholar
Müller, K. J., Nogami, Y., and Lenz, H. 1974. Phosphatische Ringe als Mikrofossilien im Altpaläozoikum. Palaeontographica, series A, 146:7999.Google Scholar
Pashin, J. C., and Ettensohn, F. R. 1987. An epeiric shelf-to-basin transition: Bedford-Berea sequence, northeastern Kentucky and south-central Ohio. American Journal of Science, 287:893926.CrossRefGoogle Scholar
Pashin, J. C., and Ettensohn, F. R. 1992. Paleoecology and sedimentology of the dysaerobic Bedford fauna (Late Devonian), Ohio and Kentucky (USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 91:2134.CrossRefGoogle Scholar
Roeser, E. W. 1986. A Lower Mississippian (Kinderhookian-Osagian) crinoid fauna from the Cuyahoga Formation of northeastern Ohio. Unpublished M.S. thesis, University of Cincinnati, Cincinnati, 322 p.Google Scholar
Ruedemann, R. H. 1896. The discovery of a sessile Conularia. New York State Geological Survey Annual Report, 15:699728.Google Scholar
Sandberg, C. A. 1997. Mississippian, p. 317322. In Parker, S. P. (ed.), McGraw-Hill Encyclopedia of Science and Technology, eighth edition, v. 11. McGraw-Hill, New York.Google Scholar
Schmidt, W., and Teichmüller, M. 1956. Die Enträtselung eines bislang unbekannten Fossils im deutschen Oberkarbon, Sphenothallus stubblefieldi n. sp., und die Art seines Auftretens. Geologisches Jahrbuch, 71:243298.Google Scholar
Schmidt, W., and Teichmüller, M. 1958. Neue Funde von Sphenothallus auf dem westeuropäischen Festland, insbesondere in Belgien, und ergänzende Beobachtungen zur Gattung Sphenothallus . Association pour l'Étude de la Paléontologie et de la Stratigraphie Houillères, Publication 33, 34 p., 6 pls.Google Scholar
Schwimmer, B. A., Hannibal, J. T., Feldmann, R. M., and Stukel, D. J. III. 1987. The paleontology and depositional environment of the Chagrin Shale (Famennian) in northeastern Ohio. Second International Symposium on the Devonian System, Program and Abstracts, p. 204.Google Scholar
Schwimmer, B. A., and Feldmann, R. M. 1990. Stratigraphic distribution of brachiopods and bivalves in the Upper Devonian (Famennian) Chagrin Shale in the Cuyahoga River Valley, northeast Ohio. Kirtlandia, 45:731.Google Scholar
Slater, I. L. 1907. A monograph of British conulariæ. Monograph of the Palaeontographical Society, 61(295):140, 5 pls.CrossRefGoogle Scholar
Taboada, A. C. 1997. Bioestratigrafía del Carbonífero marino del Valle de Calingasta-Uspallata, Provincias de San Juan y Mendoza. Ameghiniana, 34(2):215246.Google Scholar
van Iten, H. 1994. Redescription of Glyptoconularia gracilis (Hall), an Ordovician conulariid from North America. New York State Museum Bulletin, 481:363366.Google Scholar
van Iten, H., Cox, R. S., and Mapes, R. H. 1992. New data on the morphology of Sphenothallus Hall: implications for its affinities. Lethaia, 25:135144.CrossRefGoogle Scholar
van Iten, H., Fitzke, J. A., and Cox, R. S. 1996. Problematical fossil cnidarians from the Upper Ordovician of the north-central USA. Palaeontology, 39(4):10371064.Google Scholar
Warn, J. M. 1974. Presumed myzostomid infestation of an Ordovician crinoid. Journal of Paleontology, 48:506513.Google Scholar
Weidner, W. E., and Feldmann, R. M. 1985. Paleoecological interpretation of echinocarid arthropod assemblages in the Late Devonian (Famennian) Chagrin Shale, northeastern Ohio. Journal of Paleontology, 59:9861004.Google Scholar
Welch, J. R. 1976. Phosphannulus on Paleozoic crinoid stems. Journal of Paleontology, 50:218225.Google Scholar