Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-23T20:54:10.313Z Has data issue: false hasContentIssue false

New materials of acanthomorphic acritarchs from the Ediacaran Weng'an Biota (South China)

Published online by Cambridge University Press:  31 May 2024

Junxian Wu
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Weichen Sun
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
Xiaodong Shang
Affiliation:
MNR Key Laboratory of Stratigraphy and Palaeontology, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Pengju Liu
Affiliation:
MNR Key Laboratory of Stratigraphy and Palaeontology, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Maoyan Zhu
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, China
Zongjun Yin*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, China
*
*Corresponding author.

Abstract

The Weng'an Biota from the Ediacaran Doushantuo Formation in Guizhou Province, southwestern China, is known for its three-dimensionally phosphatized acritarchs, multicellular algae, and embryo-like animal fossils. Among these diverse microfossils, acanthomorphic acritarchs have played a significant role in the biostratigraphic subdivision and correlation of the lower-middle Ediacaran System. However, most previous studies on the biostratigraphy of the Doushantuo Formation in the Weng'an area have focused on large acanthomorphic acritarchs (LAAs, vesicle diameter >200 μm), whereas the smaller acanthomorphic acritarchs (SAAs, vesicle diameter <100 μm) from the Weng'an Biota have been largely overlooked. In this study, we examined >500 thin sections and discovered a large number of well-preserved, small (<100 μm) and medium-sized acanthomorphic acritarchs (MAAs, vesicle diameter ranging 100–200 μm). In total, we have identified SAAs in four genera and six species (Tanarium conoideum Kolosova, 1991, emend. Moczydłowska et al., 1993; Tanarium elegans Liu et al., 2014; Mengeosphaera membranifera Shang, Liu, and Moczydłowska, 2019; Mengeosphaera minima Liu et al., 2014; Estrella recta Liu and Moczydłowska, 2019; Variomargosphaeridium gracile Xiao et al., 2014), as well as two types of MAAs (Tanarium tuberosum Moczydłowska, Vidal, and Rudavskaya, 1993, emend. Moczydłowska, 2015; Weissiella cf. W. grandistella Vorob'eva, Sergeev, and Knoll, 2009, emend. Liu and Moczydłowska, 2019). This updated acritarch assemblage of the Weng'an Biota is valuable for correlating the Ediacaran Doushantuo Formation between the Weng'an and Yangtze Gorges areas. It also serves as a tool to test the proposed acritarch biozones in Ediacaran formations of South China and other localities, including Australia, Siberia, and the East European Platform.

Type
Articles
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.P., Macdonald, F.A., Jones, D.S., McMahon, S., and Briggs, D.E.G., 2017, Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia: Geology, v. 45, no. 12, p. 10791082, https://doi.org/10.1130/G39576.1.CrossRefGoogle Scholar
Bottjer, D.J., Yin, Z.J., Zhao, F.C., and Zhu, M.Y., 2020, Comparative taphonomy and phylogenetic signal of phosphatized Weng'an and Kuanchuanpu Biotas: Precambrian Research, v. 349, n. 105408, https://doi.org/10.1016/j.precamres.2019.105408.CrossRefGoogle Scholar
Chen, J.Y., 2004, The Dawn of Animal World: Nanjing, China, Jiangsu Science and Technology Press, 336 p.Google Scholar
Chen, M.E., and Liu, K.W., 1986, The geological significance of newly discovered microfossils from the upper Sinian (Doushantuo age) phosphorites: Scientia Geologica Sinica, v. 1, p. 4653.Google Scholar
Chen, S., Yin, C., Liu, P., Gao, L., Tang, F., and Wang, Z., 2010, Microfossil assemblage from chert nodules of the Ediacaran Doushantuo Formation in Zhangcunping, northern Yichang, South China: Acta Geologica Sinica (Chinese Edition), v. 84, p. 7077. [In Chinese]Google Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y., 2005, U-Pb ages from the neoproterozoic Doushantuo Formation, China: Science, v. 308, no. 5718, p. 9598, https://doi.org/10.1126/science.1107765.CrossRefGoogle ScholarPubMed
Cunningham, J., Vargas, K., Yin, Z., Bengtson, S., and Donoghue, P., 2017, The Weng'an biota (Doushantuo Formation): an Ediacaran window on soft-bodied and multicellular microorganisms: Journal of the Geological Society, v. 174, no. 5, p. 793802, https://doi.org/10.1144/jgs2016-142.CrossRefGoogle Scholar
Evitt, W.R., 1963, A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs: Proceedings of the National Academy of Sciences of the United States of America, v. 49, p. 158164, 298–302.CrossRefGoogle ScholarPubMed
Golubkova, E.Y., Raevskaya, E.G., and Kuznetsov, A.B., 2010, Lower Vendian microfossil assemblages of East Siberia: significance for solving regional stratigraphic problems: Stratigraphy and Geological Correlation, v. 18, no. 4, p. 353375, https://doi.org/10.1134/S0869593810040015.CrossRefGoogle Scholar
Grey, K., 2005, Ediacaran Palynology of Australia: Canberra, Association of Australasian Palaeontologists, Memoir 31, 439 p.Google Scholar
Knoll, A.H., 1984, Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard: Journal of Paleontology, v. 58, p. 131162.Google Scholar
Knoll, A., 1992, Microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, western Svalbard: Palaeontology, v. 35, p. 751774.Google Scholar
Knoll, A.H., Swett, K., and Mark, J., 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen: Journal of Paleontology, v. 65, no. 4, p. 531570.CrossRefGoogle ScholarPubMed
Kolosova, S.P., 1991, Late Precambrian spiny microfossils from the eastern part of the Siberian Platform: Algologiya, v. 1, no. 2, p. 5359.Google Scholar
Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V., 2008, Assembly, configuration, and break-up history of Rodinia: a synthesis: Precambrian Research, v. 160, p. 179210, https://doi.org/10.1016/j.precamres.2007.04.021.CrossRefGoogle Scholar
Liu, P., and Moczydłowska, M., 2019, Ediacaran microfossils from the Doushantuo Formation chert nodules in the Yangtze Gorges area, South China, and new biozones: Fossils and Strata, v. 65, p. 1172, https://doi.org/10.1002/9781119564225.ch1.CrossRefGoogle Scholar
Liu, P., and Yin, C., 2005, New data of phosphatized acritarchs from the Ediacaran Doushantuo Formation at Weng'an, Guizhou Province, southwest China: Acta Geologica Sinica (English Edition), v. 79, p. 575581.Google Scholar
Liu, P., Yin, C., Chen, S., Tang, F., and Gao, L., 2012, Discovery of Ceratosphaeridium (Acritarcha) from the Ediacaran Doushantuo Formation in Yangtze Gorges, South China and its biostratigraphic implication: Bulletin of Geosciences, v. 87, p. 195200, https://doi.org/10.3140/bull.geosci.1223.CrossRefGoogle Scholar
Liu, P., Xiao, S., Yin, C., Chen, S., Zhou, C., and Li, M., 2014a, Ediacaran acanthomorphic acritarchs and other microfossils from chert nodules of the upper Doushantuo Formation in the Yangtze Gorges area, South China: Journal of Paleontology, v. 88, no. 1, p. 1139, https://doi.org/10.1666/13-009.CrossRefGoogle Scholar
Liu, P., Chen, S., Zhu, M., Li, M., Yin, C., and Shang, X., 2014b, High-resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: implication for subdivision and global correlation of the Ediacaran System: Precambrian Research, v. 249, p. 199214, https://doi.org/10.1016/j.precamres.2014.05.014.CrossRefGoogle Scholar
McFadden, K., Xiao, S., Zhou, C., and Kowalewski, M., 2009, Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China: Precambrian Research, v. 173, nos. 1–4, p. 170190, https://doi.org/10.1016/j.precamres.2009.03.009.Google Scholar
Moczydłowska, M., 2005, Taxonomic review of some Ediacaran acritarchs from the Siberian Platform: Precambrian Research, v. 136, no. 3/4, p. 283307, https://doi.org/10.1016/j.precamres.2004.12.001.CrossRefGoogle Scholar
Moczydłowska, M., 2015, Algal affinities of Ediacaran and Cambrian organic-walled microfossils with internal reproductive bodies: Tanarium and other morphotypes: Palynology, v. 40, no. 1, p. 83121, https://doi.org/10.1080/01916122.2015.1006341.CrossRefGoogle Scholar
Moczydłowska, M., and Nagovitsin, K., 2012, Ediacaran radiation of organic-walled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia: Precambrian Research, v. 198–199, p. 124, https://doi.org/10.1016/j.precamres.2011.12.010.Google Scholar
Moczydłowska, M., Vidal, G., and Rudavskaya, V., 1993, Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia: Palaeontology, v. 36, no. 3, p. 495521.Google Scholar
Nagovitsyn, K.E., Faizullin, M.S., and Yakshin, M.S., 2004, New forms of Baikalian acanthomorphytes from the Ura Formation of the Patom Uplift, East Siberia: Geologiya e Geofisika, v. 45, p. 719.Google Scholar
Narbonne, G., Xiao, S., and Shields, G., 2012, The Ediacaran Period, in Gradstein, F.M., Ogg, J.G., Schmitz, M.D., et al., eds., The Geologic Time Scale 2012: Boston, Elsevier, p. 413435.CrossRefGoogle Scholar
Ouyang, Q., Zhou, C., Xiao, S., Chen, Z., and Shao, Y., 2019, Acanthomorphic acritarchs from the Ediacaran Doushantuo Formation at Zhangcunping in South China, with implications for the evolution of early Ediacaran eukaryotes: Precambrian Research, v. 320, p. 171192, https://doi.org/10.1016/j.precamres.2018.10.012.CrossRefGoogle Scholar
Ouyang, Q., Zhou, C., Xiao, S., Guan, C., Chen, Z., Yuan, X., and Sun, Y., 2021, Distribution of Ediacaran acanthomorphic acritarchs in the lower Doushantuo Formation of the Yangtze Gorges area, South China: evolutionary and stratigraphic implications: Precambrian Research, v. 353, n. 106005, https://doi.org/10.1016/j.precamres.2020.106005.CrossRefGoogle Scholar
Prasad, B., and Ramson, A., 2016, Record of Ediacaran complex acanthomorphic acritarchs from the lower Vindhyan succession of the Chambal Valley (East Rajasthan), India and their biostratigraphic significance: Journal of the Palaeontological Society of India, v. 61, p. 2962.Google Scholar
Sergeev, V., Knoll, A., and Vorob'eva, N., 2011, Ediacaran microfossils from the Ura Formation, Baikal-Patom Uplift, Siberia: taxonomy and biostratigraphic significance: Journal of Paleontology, v. 85, no. 5, p. 9871011, https://doi.org/10.1666/11-022.1.CrossRefGoogle Scholar
Shang, X., Liu, P., and Moczydłowska, M., 2019, Acritarchs from the Doushantuo Formation at Liujing section in Songlin area of Guizhou Province, South China: implications for early–middle Ediacaran biostratigraphy: Precambrian Research, v. 334, n. 105453, https://doi.org/10.1016/j.precamres.2019.105453.CrossRefGoogle Scholar
Steiner, M., Li, G., Qian, Y., Zhu, M., and Erdtmann, B.D., 2007, Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, no. 1/2, p. 6799, https://doi.org/10.1016/j.palaeo.2007.03.046.CrossRefGoogle Scholar
Veis, A.F., Vorob'eva, N.G., and Goubkova, E.Y., 2006, The early Vendian microfossils first found in the Russian Plate: taxonomic composition and biostratigraphic significance: Stratigraphy and Geological Correlation, v. 14, p. 368385, https://doi.org/10.1134/S0869593806040022.CrossRefGoogle Scholar
Vidal, G., 1990, Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway: Palaeontology, v. 33, p. 287298.Google Scholar
Vorob'eva, N.G., and Petrov, P.Y., 2020, Microbiota of the Barakun Formation and biostratigraphic characteristics of the Dal'nyaya Taiga Group: early Vendian of the Ura Uplift (eastern Siberia): Stratigraphy and Geological Correlation, v. 28, p. 365380, https://doi.org/10.1134/S0869593820040103.Google Scholar
Vorob'eva, N.G., Sergeev, V.N., and Chumakov, N.M., 2008, New finds of early Vendian microfossils in the Ura Formation: revision of the Patom Supergroup Age, middle Siberia: Doklady Earth Sciences, v. 419, no. A, p. 411416, https://doi.org/10.1134/S1028334X08030136.Google Scholar
Vorob'eva, N.G., Sergeev, V.N., and Knoll, A.H., 2009, Neoproterozoic microfossils from the northeastern margin of the East European Platform: Journal of Paleontology, v. 83, no. 2, p. 161196, https://doi.org/10.1666/08-064.1.CrossRefGoogle Scholar
Willman, S., and Moczydłowska, M., 2008, Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation: Precambrian Research, v. 162, no. 3/4, p. 498530, https://doi.org/10.1016/j.precamres.2007.10.010.Google Scholar
Willman, S., and Moczydłowska, M., 2011, Acritarchs in the Ediacaran of Australia—local or global significance? Evidence from the Lake Maurice West 1 drillcore: Review of Palaeobotany and Palynology, v. 166, no. 1/2, p. 1228, https://doi.org/10.1016/j.revpalbo.2011.04.005.CrossRefGoogle Scholar
Willman, S., Moczydłowska, M., and Grey, K., 2006, Neoproterozoic (Ediacaran) diversification of acritarchs—a new record from the Murnaroo 1 drillcore, eastern Officer Basin, Australia: Review of Palaeobotany and Palynology, v. 139, no. 1–4, p. 1739, https://doi.org/10.1016/j.revpalbo.2005.07.014.Google Scholar
Xiao, S., 2004, New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China): Journal of Paleontology, v. 78, p. 393401, https://doi.org/10.1666/0022-3360(2004)078<0393:NMAFAA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Xiao, S., and Knoll, A., 1999, Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China: Lethaia, v. 32, p. 219240.CrossRefGoogle ScholarPubMed
Xiao, S., and Knoll, A., 2000, Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China: Journal of Paleontology, v. 74, no. 5, p. 767788, https://doi.org/10.1666/0022-3360(2000)074<0767:PAEFTN>2.0.CO;2.Google Scholar
Xiao, S., and Knoll, A.H., 2007, Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China: Lethaia, v. 32, p. 219238, https://doi.org/10.1111/j.1502-3931.1999.tb00541.x.CrossRefGoogle Scholar
Xiao, S., and Narbonne, G., 2020, The Ediacaran Period in geologic time, in Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., eds., The Geologic Time Scale 2020: Boston, Elsevier, p. 521561.CrossRefGoogle Scholar
Xiao, S., Zhang, Y., and Knoll, A., 1998, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite: Nature, v. 391, no. 6667, p. 553558.Google Scholar
Xiao, S., Knoll, A., Zhang, L., and Hua, H., 1999, The discovery of Wengania globosa in Doushantuo phosphorites in Chadian, Shaanxi Province: Acta Micropalaeontologica Sinica, v. 16, p. 259266.Google Scholar
Xiao, S., Schiffbauer, J., McFadden, K., and Hunter, J., 2010, Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation: Earth and Planetary Science Letters, v. 297, no. 3/4, p. 481495, https://doi.org/10.1016/j.epsl.2010.07.001.CrossRefGoogle Scholar
Xiao, S., Zhou, C., Liu, P., Wang, D., and Yuan, X., 2014a, Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and their implications for biostratigraphic correlation: Journal of Paleontology, v. 88, no. 1, p. 167, https://doi.org/10.1666/12-157R.Google Scholar
Xiao, S., Muscente, A., Chen, L., Zhou, C., Schiffbauer, J., Wood, A., Polys, N., and Yuan, X., 2014b, The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes: National Science Review, v. 1, no. 4, p. 498520, https://doi.org/10.1093/nsr/nwu061.Google Scholar
Xie, G., Zhou, C., Mcfadden, K.A., Xiao, S., and Yuan, X., 2008, Microfossils discovered from the Sinian Doushantuo Formation in the Jiulongwan section, East Yangtze Gorges area, Hubei Province, South China: Acta Palaeontologica Sinica, v. 47, p. 279291.Google Scholar
Yang, L., Pang, K., Chen, L., Zhong, Z., and Yang, F., 2020, New materials of microfossils from the Ediacaran Doushantuo Formation in Baizhu phosphorite deposit, Baokang, Hubei Provience [sic]: Acta Micropalaeontologica Sinica, v. 37, no. 1, p. 120.Google Scholar
Yang, C., Rooney, A., Condon, D., Li, X., Grazhdankin, D., Bowyer, F., Hu, C., Macdonald, F.A., and Zhu, M., 2021, The tempo of Ediacaran evolution: Science Adances, v. 7, no. 45, n. 9643, https://doi.org/10.1126/sciadv.abi9643.Google ScholarPubMed
Ye, Q., Li, J., Tong, J., An, Z., Hu, J., and Xiao, S., 2022, A microfossil assemblage from the Ediacaran Doushantuo Formation in the Shennongjia area (Hubei Province, South China): filling critical paleoenvironmental and biostratigraphic gaps: Precambrian Research, v. 377, n. 106691, https://doi.org/10.1016/j.precamres.2022.106691.Google Scholar
Yin, C., 1990, Spinose acritarchs from the Toushantuo Formation and its geological significance: Acta Micropalaeontologica Sinica, v. 7, p. 265270.Google Scholar
Yin, C., and Liu, G., 1988, Micropaleofloras, in Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhao, Y., et al., eds., The Sinian System of Hubei: Wuhan, China University of Geosciences Press, p. 170180.Google Scholar
Yin, C., Liu, P., Awramik, S.M., Chen, S., Tang, F., Gao, L., Wang, Z., and Riedman, L.A., 2011, Acanthomorph biostratigraphic succession of the Ediacaran Doushantuo Formation in the East Yangtze Gorges, South China: Acta Geologica Sinica (English Edition), v. 85, p. 283295, https://doi.org/10.1111/j.1755-6724.2011.00398.x.CrossRefGoogle Scholar
Yin, L., 1987, Microbiotas of latest Precambrian sequences in China, in Nanjing Institute of Geology and Palaeontology Academica Sinica, ed., Stratigraphy and Palaeontology of Systemic Boundaries in China: Precambrian-Cambrian Boundary (1): Nanjing, China, Nanjing University Press, p. 415– 494.Google Scholar
Yin, L., and Li, Z., 1978, Precambrian microfloras of southwest China with reference to their stratigraphic significance: Memoir, Nanjing Institute of Geology and Palaeontology, Academia Sinica, v. 10, p. 41108.Google Scholar
Yin, L., Zhu, M., Knoll, A., Yuan, X., Zhang, J. and Hu, J., 2007, Doushantuo embryos preserved inside diapause egg cysts: Nature, v. 446, p. 661663, https://doi.org/10.1038/nature05682.CrossRefGoogle ScholarPubMed
Yin, L., Zhou, C., and Yuan, X., 2008, New data on Tianzhushania—an Ediacaran diapause egg cyst from Yichang, Hubei: Acta Palaeontologica Sinica, v. 47, p. 129140.Google Scholar
Yin, L., Wang, D., Yuan, X., and Zhou, C., 2011, Diverse small spinose acritarchs from the Ediacaran Doushantuo Formation, South China: Palaeoworld, v. 20, no. 4, p. 279289, https://doi.org/10.1016/j.palwor.2011.10.002.Google Scholar
Yin, Z., Zhu, M., Tafforeau, P., Chen, J., Liu, P., and Li, G., 2013, Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng'an Biota, South China: Precambrian Research, v. 225, p. 4457, https://doi.org/10.1016/j.precamres.2011.08.011.CrossRefGoogle Scholar
Yin, Z., Liu, P., Li, G., Tafforeau, P., and Zhu, M., 2014, Biological and taphonomic implications of Ediacaran fossil embryos undergoing cytokinesis: Gondwana Research, v. 25, no. 3, p. 10191026, https://doi.org/10.1016/j.gr.2013.01.008.Google Scholar
Yin, Z., Zhu, M., Davidson, E.H., Bottjer, D.J., Zhao, F., and Tafforeau, P., 2015, Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian: Proceedings of the National Academy of Sciences, v. 112, no. 12, p. E1453E1460, https://doi.org/10.1073/pnas.1414577112.CrossRefGoogle ScholarPubMed
Yuan, X., and Hofmann, H.J., 1998, New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China: Alcheringa, v. 22, p. 189222.Google Scholar
Yuan, X., Xiao, S., Yin, L., Knoll, A., Zhou, C., and Mu, X., 2002, Doushantuo Fossils: Life on the Eve of Animal Radiation: Hefei, China, China University of Science and Technology Press, 171 p. [In Chinese, with English summary]Google Scholar
Zang, W., and Walter, M.R., 1992, Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia: The Association of Australasia Palaeontologists Memoir, v. 12, p. 1132.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A., 1998, Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China: Journal of Paleontology Memoir, v. 72, supplement, p. 152.CrossRefGoogle Scholar
Zhou, C., Brasier, M., and Xue, Y., 2001, Three-dimensional phosphatic preservation of giant acritarchs from the terminal Proterozoic Doushantuo Formation in Guizhou and Hubei provinces, South China: Palaeontology, v. 44, p. 11571178, https://doi.org/10.1111/1475-4983.00219.Google Scholar
Zhou, C., Chen, Z., and Xue, Y., 2002a, New microfossils from the late Neoproterozoic Doushantuo Formation at Chaoyang phosphorite deposit in Jiangxi Province, South China: Acta Palaeontologica Sinica, v. 41, p. 178192.Google Scholar
Zhou, C., Yuan, X., and Xiao, S., 2002b, Phosphatized biotas from the Neoproterozoic Doushantuo Formation on the Yangtze Platform: Chinese Science Bulletin, v. 47, p. 19181924, https://doi.org/10.1360/02tb9419.CrossRefGoogle Scholar
Zhou, C., Yuan, X., Xiao, S., Chen, Z., and Xue, Y., 2004, Phosphatized fossil assemblage from the Doushantuo Formation in Baokang, Hubei Province: Acta Micropalaeontologica Sinica, v. 21, p. 349366.Google Scholar
Zhou, C., Xie, G., Mcfadden, K., Xiao, S., and Yuan, X., 2007, The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: causes and biostratigraphic significance: Geological Journal, v. 42, p. 229262, https://doi.org/10.1002/gj.1062.Google Scholar
Zhou, C., Li, X.-H., Xiao, S., Lan, Z., Ouyang, Q., Guan, C., and Chen, Z., 2017, A new SIMS zircon U-Pb date from the Ediacaran Doushantuo Formation: age constraint on the Weng'an biota: Geological Magazine, v. 154, no. 6, p. 11931201, https://doi.org/10.1017/S0016756816001175.CrossRefGoogle Scholar
Zhou, C., Yuan, X., Xiao, S., Chen, Z., and Hua, H., 2019, Ediacaran integrative stratigraphy and timescale of China: Science China-Earth Sciences, v. 62, no. 1, p. 724, https://doi.org/10.1007/s11430-017-9216-2.CrossRefGoogle Scholar
Zhu, M., Zhang, J., and Yang, A., 2007, Integrated Ediacaran (Sinian) chronostratigraphy of South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, no. 1/2, p. 761, https://doi.org/10.1016/j.palaeo/2007.03.025.CrossRefGoogle Scholar
Zhu, M., Lu, M., Zhang, J., Zhao, F., Li, G., Aihua, Y., Zhao, X., and Zhao, M., 2013, Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China: Precambrian Research, v. 225, p. 728, https://doi.org/10.1016/j.precamres.2011.07.019.CrossRefGoogle Scholar
Zhu, M., Yang, A., Yuan, J., Li, G., Zhang, J., Zhao, F., Ahn, S., and Miao, L., 2019, Cambrian integrative stratigraphy and timescale of China: Science China Earth Sciences, v. 62, p. 2560, https://doi.org/10.1007/s11430-017-9291-0.CrossRefGoogle Scholar