Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-23T23:12:00.243Z Has data issue: false hasContentIssue false

The most widely distributed trilobite species: Ordovician Carolinites genacinaca

Published online by Cambridge University Press:  20 May 2016

Tim Mccormick
Affiliation:
Division of Earth Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
Richard A. Fortey
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

Abstract

The distributions of trilobite species were controlled by a combination of habitat preferences and paleogeographic constraints, which tend to limit their extent. The Lower Ordovician trilobite Carolinites genacinaca Ross, 1951, however, had a remarkable range unequaled among polymerid trilobites; it has been recognized on all Ordovician paleocontinents. Its distribution has been explained by an epipelagic mode of life, based on evidence from functional morphology, analogy with modern pelagic crustaceans, and geological occurrence. In such a case, morphological identity throughout its range might be anticipated, if all occurrences can be postulated to be members of a single pandemic population. Rotational superimposition has been used to compare variation within samples drawn from Alberta, Spitsbergen, and Australia with a benchmark population from the western United States. All are morphometrically similar. By any criterion, specimens identical to the benchmark population are found within the Alberta, Spitsbergen and Australia samples, which represent the extremes of the species' geographic range. A lone cranidium from France, previously referred to Carolinites vizcainoi, may be a juvenile of C. genacinaca or C. tasmaniensis; its differences are consistent with ontogeny. A small number of specimens from Siberia and central China show differences in cranidial proportions from the Utah specimens that may be the result of preservational factors and/or photographic technique, or may represent genuine morphological disparity; this could be clarified if more specimens were to become available. This study suggests that C. genacinaca was ubiquitous in the epipelagic environment in a belt that encircled the planet between paleolatitudes of approximately 30°N and 30°S.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G., and Aceñolaza, G. F. 1992. The genus Jujuyaspis as a world reference fossil for the Cambrian-Ordovician boundary, p. 115120. In Webby, B. D. and Laurie, J. R. (eds.), Global Perspectives on Ordovician Geology. 6th International Symposium on the Ordovician System, 15-19 July 1991, Sydney, Australia.Google Scholar
Auffray, J.-C, Alibert, P., Renaud, S., Orth, A., and Bonhomme, F. 1996. Fluctuating asymmetry in Mus musculus subspecific hybridization: Traditional and Procrustes comparative approach, p. 275283. In Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., and Slice, D. E. (eds.), Advances in Morphometrics. NATO ASI Series, Series A: Life Sciences. Plenum Press, New York.CrossRefGoogle Scholar
Balashova, E. A. 1961. The discovery of a new trilobite from the Glauconitic series of the Baltic area. Paleontological Journal, 3:129132. (In Russian)Google Scholar
Benson, R. H. 1976. The evolution of the ostracode Costa analyzed by “Theta-Rho difference.” Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg. N.F., 18/19(Suppl.):127139.Google Scholar
Benson, R. H. 1982. Deformation, Da Vinci's concept of form, and the analysis of events in evolutionary history, p. 241277. In Gallitelli, E. M. (ed.), Palaeontology, Essential of Historical Geology. S. T. E. M. Mucchi. Modena, Italy.Google Scholar
Benson, R. H. 1983. Biomechanical stability and sudden change in the evolution of the deep-sea ostracode Poseidonamicus. Paleobiology, 9:398413.CrossRefGoogle Scholar
Benson, R. H., Chapman, R. E., and Siegel, A. F. 1982. On the measurement of morphology and its change. Paleobiology, 8:328339.Google Scholar
Bookstein, F. L. 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge, 435 p.Google Scholar
Chapman, R. E. 1990a. Conventional Procrustes approaches, p. 251267. In Rohlf, F. J. and Bookstein, F. L. (eds.), Proceedings of the Michigan Morphometrics Workshop. Special Publication Number 2, University of Michigan Museum of Zoology.Google Scholar
Chapman, R. E. 1990b. Shape analysis in the study of dinosaur morphology, p. 2142. In Carpenter, K. and Currie, P. J. (eds.), Dinosaur Systematics: Perspectives and Approaches. Cambridge University Press, Cambridge.Google Scholar
Chugaeva, M. N. 1964. Early and Middle Ordovician trilobites in the north-east of the U.S.S.R. In Chugaeva, M. N., Rozman, Kh. S., and Ivanova, V. A., Comparative biostratigraphy of Ordovician deposits in the north-east of the USSR. Transactions of the Academy of Sciences of the U.S.S.R. Geological Institute, 106:2475. (In Russian)Google Scholar
Chugaeva, M. N. 1973. Trilobites. In M. N. Chugaeva, V. A. Ivanova, M. M. Oradovskaya and V. N. Yakovlev, Biostratigraphy of the lower part of the Ordovician in the north-east of the U.S.S.R. and biogeography of the uppermost lower Ordovician. Transactions of the Academy of Sciences of the U.S.S.R. Geologica. Institute, 213:43121. (In Russian)Google Scholar
Cocks, L. R. M., and Fortey, R. A. 1990. Biogeography of Ordovician and Silurian faunas, p. 97104. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12.Google Scholar
Cooper, R. A, Fortey, R. A., and Lindholm, K. 1991. Latitudinal and depth zonation of early Ordovician graptolites. Lethaia, 24:199218.Google Scholar
Dean, W. T. 1973a. Ordovician trilobites from the Keele Range, northwestern Yukon Territory. Geological Survey of Canada, Bulletin, 223:143.Google Scholar
Dean, W. T. 1973b. The Lower Palaeozoic stratigraphy and faunas of the Taurus Mountains near Beysehir, Turkey. III. Bulletin of the British Museum (Natural History) Geology, 24:279348.Google Scholar
Dean, W. T. 1989. Trilobites from the Survey Peak, Outram and Skoki formations (Upper Cambrian-Lower Ordovician) at Wilcox Pass, Jasper National Park, Alberta. Geological Survey of Canada, Bulletin, 389:1141.Google Scholar
Etheridge, R. 1919. The Cambrian trilobites of Australia and Tasmania. Transactions of the Royal Society of South Australia, 43:373393.Google Scholar
Fortey, R. A. 1974. A new pelagic trilobite from the Ordovician of Spitsbergen, western Ireland and Utah. Palaeontology, 17:111124.Google Scholar
Fortey, R. A. 1975a. Early Ordovician trilobite communities. Fossils and Strata, 4:331352.Google Scholar
Fortey, R. A. 1975b. The Ordovician trilobites of Spitsbergen. II. Asaphidae, Nileidae, Raphiophoridae and Telephinidae of the Valhallfonna Formation. Norsk Polarinstitutt Skrifter, 162:1207.Google Scholar
Fortey, R. A. 1985. Pelagic trilobites as an example of deducing the life habits of extinct arthropods. Transactions of the Royal Society of Edinburgh: Earth Sciences, 76:219230.Google Scholar
Fortey, R. A., and Owens, R. M. 1997. Evolutionary history, p. 02490287. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. O, Trilobita 1, Revised. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Gower, J. C. 1975. Generalized Procrustes analysis. Psychometrika, 40:3351.Google Scholar
Harrington, H. J., and Leanza, A. F. 1957. Ordovician trilobites of Argentina. Special Publication of the Department of Geology, University of Kansas, 1:1276.Google Scholar
Henderson, R. A. 1983. Early Ordovician faunas from the Mount Windsor Subprovince, northeastern Queensland. Memoirs of the Association of Australasian Palaeontologists, 1:145175.Google Scholar
Henningsmoen, G. 1957. The trilobite family Olenidae. Skrifter utgitt av det Norske Videnskaps-Akadami i Oslo. 1. Mathematics and Natural Sciences, 1:1303.Google Scholar
Hintze, L. F. 1951. Lower Ordovician detailed stratigraphic sections for western Utah of particular interest to geologists concerned with petroleum possibilities of the Great Basin. Utah Geological and Mineralogical Survey Bulletin, 39:199.Google Scholar
Hintze, L. F. 1953. Lower Ordovician trilobites from western Utah and eastern Nevada. Utah Geological and Mineralogical Survey Bulletin, 48:1249.Google Scholar
Hughes, N. C., and Chapman, R. E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite palaeobiology. Lethaia, 28:333353.Google Scholar
Imbrie, J. 1956. Biometrical methods in the study of invertebrate fossils. American Museum of Natural History Bulletin, 108:211252.Google Scholar
Jell, P. A., and Stait, B. 1985. Revision of an early Arenig trilobite faunule from the Caroline Creek Sandstone, near Latrobe, Tasmania. Memoirs of the Museum of Victoria, 46:3551.Google Scholar
Kobayashi, T. 1940. Lower Ordovician fossils from Caroline Creek, near Latrobe, Mersey River District, Tasmania. Royal Society of Tasmania, Papers and Proceedings for 1939:6776.Google Scholar
Legg, D. P. 1976. Ordovician trilobites and graptolites from the Canning Basin, Western Australia. Geologica et Palaeontologica, 10:158.Google Scholar
Lehmann, E. 1975. Nonparametrics: Statistical Methods based on Ranks. Holden-Day, Oakland, California.Google Scholar
Lovy, D. 1995. WinDig, Release 2.0. Department of Physical Chemistry, University of Geneva, Geneva.Google Scholar
Lu, Y.-H. 1975. Ordovician trilobite faunas of central and southwestern China. Palaeontologia Sinica (B), 152(11):1463. (In Chinese)Google Scholar
Marcus, L. F. 1993. Some aspects of multivariate statistics for morphometrics, p. 96130. In Marcus, L. F., Bello, E., and García-Valdecasas, A. (eds.), Contributions to Morphometrics. Monograflas del Museo Nacional de Ciencias Naturales 8. Consejo Superior de Investigaciones Cientificas, Madrid.Google Scholar
Marcus, L. F., and Corti, M. 1996. Overview of the new, or geometric morphometrics, p. 113. In Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., and Slice, D. E. (eds.), Advances in Morphometrics. NATO ASI Series, Series A: Life Sciences. Plenum Press, New York.Google Scholar
McCormick, T., and Fortey, R. A. 1998. Independent testing of a paleobiological hypothesis: the optical design of two Ordovician pelagic trilobites reveals their relative paleobathymetry. Paleobiology, 24:235253.Google Scholar
Pillet, J. 1988. Quelques trilobites rares de l'Ordovicien inférieur de la Montagne Noire. Bulletin de la société d'Histoire Naturelle de Toulouse, 124:8999.Google Scholar
Pillet, J. 1990. A propos de Carolinites vizcainoi Pillet 1988. Bulletin de la société d'Histoire Naturelle de Toulouse, 126:97.Google Scholar
Qiu, H.-A., et al. 1983. Paleontological Atlas of eastern China. 1. Lower Paleozoic. Geological Press, Beijing, 657 p. (In Chinese)Google Scholar
Rayner, J. M. V. 1985. Linear relations in biomechanics: the statistics of scaling functions. Journal of Zoology, 206:415439.Google Scholar
Reilly, S. 1990. Comparative ontogeny of cranial shape in salamanders using resistant fit theta rho analysis, p. 311321. In Rohlf, F. J. and Bookstein, F. L. (eds.), Proceedings of the Michigan Morphometrics Workshop. Special Publication Number 2, University of Michigan Museum of Zoology.Google Scholar
Rohlf, F. J. 1990. Rotational fit (Procrustes) methods, p. 227236. In Rohlf, F. J. and Bookstein, F. L. (eds.), Proceedings of the Michigan Morphometrics Workshop. Special Publication Number 2, University of Michigan Museum of Zoology.Google Scholar
Rohlf, F. J., and Slice, D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39:4059.CrossRefGoogle Scholar
Ross, R. J. Jr. 1951. Stratigraphy of the Garden City Formation in Northeastern Utah, and its trilobite faunas. Bulletin of the Peabody Museum of Natural History, Yale University, 6:1161.Google Scholar
Ross, R. J. Jr. 1967. Some Middle Ordovician brachiopods and trilobites from the Basin Ranges, western United States. U.S. Geological Survey Professional Paper, 523D:143.Google Scholar
Ross, R. J. Jr. 1972. Fossils from the Ordovician bioherm at Meiklejohn Peak, Nevada. U.S. Geological Survey Professional Paper, 685:147.Google Scholar
Siegel, A. F., and Benson, R. H. 1982. A robust comparison of biological shapes. Biometrics, 38:341350.Google Scholar
Slice, D. E. 1994. GRF-ND: Generalized Rotational Fitting of N-dimensional Data, Revision 11-01-94. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York. 11794.Google Scholar
Slice, D. E. 1996. Three-dimensional generalized resistant fitting and the comparison of least-squares and resistant-fit residuals, p. 179199. In Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., and Slice, D. E. (eds.), Advances in Morphometrics. NATO ASI Series, Series A: Life Sciences. Plenum Press, New York.Google Scholar
Slice, D. E., Bookstein, F. L., Marcus, L. F., and Rohlf, F. J. 1996. Appendix 1: a glossary for geometric morphometrics, p. 531551. In Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., and Slice, D. E. (eds.), Advances in Morphometrics. NATO ASI Series, Series A: Life Sciences. Plenum Press, New York.Google Scholar
Sneath, P. H. A. 1967. Trend-surface analysis of transformation grids. Journal of Zoology, 151:65122.Google Scholar
Stubblefield, C. J. 1950. A new komaspid trilobite genus of wide distribution in early Ordovician times. Annals and Magazine of Natural History, Series 12, 3:341352.Google Scholar
Taylor, M. E., and Forester, R. M. 1979. Distributional model for marine isopod crustaceans and its bearing on early Palaeozoic palaeozoogeography and continental drift. Geological Society of America Bulletin, 90:405413.Google Scholar
Thompson, D. W. 1917. On Growth and Form. Cambridge, London, 793 p.Google Scholar
Walker, J. A. 1993. Ontogenetic allometry of threespine stickleback body form using landmark-based morphometrics, p. 193214. In Marcus, L. F., Bello, E., and García-Valdecasas, A. (eds.), Contributions to Morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8. Consejo Superior de Investigaciones Cientificas, Madrid.Google Scholar
Whittington, H. B. 1963. Middle Ordovician trilobites from Lower Head, western Newfoundland. Bulletin of the Museum of Comparative Zoology, Harvard, 129:1118.Google Scholar