Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T09:53:27.771Z Has data issue: false hasContentIssue false

First fossil sponge from Antarctica and its paleobiogeographical significance

Published online by Cambridge University Press:  14 July 2015

Radek Vodrážka
Affiliation:
1Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic, ,
J. Alistair Crame
Affiliation:
2British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK,

Abstract

Laocoetis piserai n. sp. (Hexactinellida, Porifera) from the mid-Cretaceous (i.e., Albian–Cenomanian) of James Ross Island is the first record of a fossil sponge from Antarctica. This new occurrence of a formerly widespread genus was restricted to relatively deep waters on the margins of an active volcanic arc. Its occurrence in Antarctica is further evidence that the genus Laocoetis underwent a dramatic reduction in its geographic range through the Cenozoic. The only living species of the genus at the present day is Laocoetis perion from Madagascar.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barthel, D. and Tendal, O. S. 1994. Antarctic Hexactinellida, p. 9135. In Wägele, J. W. and Sieg, J. (eds.), Synopses of the Antarctic benthos, Vol. 6. Koeltz Scientific Books, Champaign, Illinois.Google Scholar
Brimaud, C. and Vachard, D. 1985. Indications paléoécologiques fournies par les Spongiaires du Miocène supérieur d'Espagne. Bulletin du Muséum National d'Histoire Naturelle de Paris, C7:311.Google Scholar
Brimaud, C. and Vachard, D. 1986. Les spongiaires siliceux du Tortonien des Bétiques (Miocène de l'Espagne du Sud): Eespèces nouvelles ou peu connues, II. Hexactinellides. Bulletin du Muséum National d'Histoire Naturelle de Paris, C8:415445.Google Scholar
Brückner, A. 2006. Taxonomy and paleoecology of lyssacinosan Hexactinellida from the Upper Cretaceous (Coniacian) of Bornholm, Denmark, in comparison with other Postpaleozoic representatives. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 564:1103.Google Scholar
Brückner, A. and Janussen, D. 2005. The first entirely preserved fossil sponge species of the genus Rossella (Hexactinellida) from the Upper Cretaceous of Bornholm, Denmark. Journal of Paleontology, 79:2128.Google Scholar
Cattaneo-Vietti, R., Bavestrello, G., Cerrano, C., Gaino, E., Mazzella, L., Pansini, M., and Sara, M. 1999. The role of sponges in the Terra Nova Bay ecosystem, p. 539549. In Farranda, F. M., Guglielmo, L. and Ianora, A. (eds.), Ross Sea ecology. Springer, Berlin.Google Scholar
Comaschi, C. I. 1962. Una Spunga silicea del Miocene di Calada Bianca. Rend. Rendiconti del Seminario della Facolta di Scienze dell'Universita di Cagliari, A.I.:38.Google Scholar
Conway, K. W., Krautter, M., Barrie, J. V., and Neuweiler, M. 2001. Hexactinellid sponge reefs on the Canadian Continental Shelf: A unique “living fossil”. Geoscience Canada, 28:7178.Google Scholar
Crame, J. A., Pirrie, D., and Riding, J. B. 2006. Mid-Cretaceous stratigraphy of the James Ross Basin, Antarctica, p. 719. In Francis, J. E., Pirrie, D. and Crame, J. A. (eds.), Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica. Geological Society Special Publications 258.Google Scholar
D'Archiac, M. A. 1847. Description des fossils du groupe nummulitique recueillis par M. S.-P. Pratt et M. J. Delbos aux environs de Bayonne et de Dax. Mémoires de la Société Géologique de France, 2:397456.Google Scholar
Defretin-Lefranc, S. 1960. Contribution à l'étude des Spongiaires siliceous du Crétacé supérieur du Nord de la France. Thèses Présentées a la Faculté des Sciences de Lille, 96, 173 p.Google Scholar
De Laubenfels, M. W. 1955. Porifera, p. E21E112. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. E. Archaeocyatha and Porifera. Geological Society and University of Kansas Press, New York.Google Scholar
Finks, R. M. and Rigby, J. K. 2003. Geographic and stratigraphic distribution, p. 275296. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology. Pt E. Porifera, Revised. Volume 2: Introduction to the Porifera. The Geological Society of America and The University of Kansas, Boulder and Lawrence.Google Scholar
Francis, J. E., Pirrie, D., and Crame, J. A. (eds.). 2006. Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica. Geological Society Special Publication 258, 216 p.Google Scholar
Geinitz, H. B. 1842. Charakteristik der Schichten und Petrefacten des sächsisch-böhmischen Kreidegebirges. Die sächsisch-böhmische Sweiz, die Oberlausitz und das Innere von Böhmen. Arnoldischen Buchhandlung, Dresden und Leipzig, 54 p.Google Scholar
Geinitz, H. B. 1871. Das Eibthalgebirge in Sachsen, Erster Theil, Der untere Quader, I., Die Seeschwämme des unteren Quaders. Theodor Fischer, Cassel, 41 p.Google Scholar
Griepenkerl, O. 1889. Die Versteinerungen der senonen Kreide von Koenigslutter im Herzogthum Braunschweig. Palaeontologische Abhandlungen, 4:305419.Google Scholar
Hinde, G. J. 1883. Catalogue of the Fossil Sponges in the Geological Department of the British Museum (Natural History), with descriptions of new and little-known species. Taylor and Francis, London, 248 p.Google Scholar
Howell, B. F. 1966. New Upper Cretaceous sponge from Puerto Rico. Journal of Paleontology, 40:207209.Google Scholar
Hurcewicz, H. 1968. Siliceous sponges from the Upper Cretaceous of Poland, Part II, Monaxonia and Triaxonia. Acta Palaeontologica Polonica, 13:396.Google Scholar
Ineson, J. R. 1989. Coarse-grained submarine fan and slope apron deposits in a Cretaceous back-arc basin, Antarctica. Sedimentology, 36:793819.Google Scholar
Ineson, J. R., Crame, J. A., and Thomson, M. R. A. 1986. Lithostratigraphy of the Cretaceous strata of west James Ross Island, Antarctica. Cretaceous Research, 7:141159.Google Scholar
Jahnke, H. and Gasse, W. 1993. Bestandskatalog der Kreideschwamm-Originale im Institut und Museum für Geologie und Paläontologie, Göttingen, und im Roemer-Museum, Hildesheim. Mitteilungen aus dem Roemer-Museum Hildesheim, Neue Folge, 4:1119.Google Scholar
Kiel, S. 2002. Notes on the biogeography of Campanian - Maastrichtian gastropods. Schriftenreihe der Erdwissenschaftlichen Kommission Osterreiche Akademie der Wissenschaften, 15:109127.Google Scholar
Krautter, M. 2002. Fossil Hexactinellida: An Overview, p. 12111223. In Hooper, J. N. A. and Van Soest, R. W. M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Press, Amsterdam.Google Scholar
Krautter, M., Conway, K. W., Barrie, J. V., and Neuweller, M. 2001. Discovery of a “living dinosaur”: Globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies, 44:265282.Google Scholar
Lagneau-Hérenger, L. 1962. Contribution a l'étude des Spongiaires siliceux du Crétacé inférieur. Mémoires de la Société Géologique de France, nouvelle série, 95:1252.Google Scholar
Leonhard, R. 1897. Die Fauna der Kreideformation in Oberschieisen. Palaeontographica, 44:170.Google Scholar
Leys, S., Mackie, G. O., and Reiswig, H. M. 2007. The Biology of Glass Sponges. Advances in Marine Biology, 52:1145.Google Scholar
Lévi, C. 1986. Laocaetis perion nov. sp., Spongiaire Hexactinellide Craticulariidae de l'océan Indien. Bulletin du Muséum National d'Histoire Naturelle de Paris, A8:437442.Google Scholar
Małecki, J. 1980. Santonian siliceous sponges from Korzkiew near Kraków (Poland). Rocznik Polskiego Towarzystwa Geologicznego, 50:409431.Google Scholar
Malfatti, P. 1900. Contributo alla spongiofauna del Cenozoico italiano. Paleontografica Italica, 1900:267303.Google Scholar
Manzoni, A. 1880. Spunge silicee della molassa miocenica del Bolognese. Atti della Società Toscana di Scienze Naturali, 5:175176.Google Scholar
Matteucci, R. 1989. Presenza di Laocaetis crassipes Pomel (Dictyida, Hexactinosa) nel Pliocene inferiore di Capo S. Marco (Sardegna sudoccidentale). Rendiconti della Società Geologica Italiana, 12:2124.Google Scholar
Mehl, D. 1992. Die Entwicklung der Hexactinellida seit dem Mesozoikum. Paläobiologie, Phylogenie und Evolutionsökologie. Berliner geowissenschaftliche Abhandlungen, Reihe E, 2:1164.Google Scholar
Menin, A. 1972. Silicosponge nell'Eoceno Medio della Valle del Chiampo (M. Lessini, Vicenza). Annali dell'Università di Ferrara (nuova serie), Scienze Geologiche e Paleontologiche, 5:6369.Google Scholar
Moret, L. 1924. Contribution a l'étude des spongiaires siliceux du Miocène de l'Algérie. Mémoires de la Société Géologique de France, nouvelle série, 1:127.Google Scholar
Moret, L. 1925. Sur quelques Spongiaires de Catalogne (Argovien, Sénonien, Eocène). Bulleti de la Societat de cienciès naturals de Barcelona “Club Muntanyenc”, 9:819.Google Scholar
Moret, L. 1926. Contribution a l'étude des spongiaires siliceux du Crétacé supérieur français. Mémoires de la Société Géologique de France, nouvelle série, 5:1327.Google Scholar
Oakley, K. P. 1938. Some facts about Cretaceous sponges. South-Eastern Naturalist, 43:5861.Google Scholar
Ott D'Estevou, P., Termier, G., and Termier, H. 1981. La Spongiofaune Néogène de Sorbas (Andalousie orientale, Espagne). Géologie Méditerranéenne, 8:6178.Google Scholar
Pajaud, D. 1973. Étude paléontologique de la Thiérache et du Marlois (NE du basin de Paris): Spongiaires du Turonien supérieur et du Sénonien inférieur. Documents des Laboratoires de géologie de la Faculté des sciences de Lyon, 57:97118.Google Scholar
Pisera, A. 1997. Upper Jurassic siliceous sponges from the Swabian Alb: taxonomy and paleoecology. Palaeontologia Polonica, 57:1216.Google Scholar
Pisera, A. and Besquets, P. 2002. Eocene siliceous sponges from the Ebro Basin (Catalonia, Spain). Geobios, 35:321346.Google Scholar
Pisera, A., Martínez, M., and Santos, H. 2006. Late Cretaceous siliceous sponges from El Rayo Formation, Puerto Rico. Journal of Paleontology, 80:594600.Google Scholar
Počta, P. (=Počta, F.) 1883. Beiträge zur Kenntniss der Spongien der böhmischen Kreideformation. I. Abtheilung: Hexactinellidae. Abhandlungen der Mathematischnaturwissenschaftlichen Classe der Königlichen Böhmischen Gesellschaft der Wissenschaften, 4:145.Google Scholar
Pomel, A. 1872. Paléontologie ou description des animaux fossiles de la Province d'Oran. Zoophytes, 5é Fasc. Spongiaires. Typographie et lithographie A.D. Perrier, Oran, 256 p.Google Scholar
Quenstedt, F. A. 1878. Petrefactenkunde Deutschlands. Fues' Verlag, Leipzig, 448 p.Google Scholar
Rauff, H. 1893. Paleospongiologie, Erster oder allgemeiner Theil, und Zweiter Theil, erste Hälfte. Palaeontographica, 40:1232.Google Scholar
Rauff, H. 1933. Spongienreste aus dem (oberturonen) Grünsand vom Kassenberg in Mülheim-Broich an der Ruhr. Abhandlungen der Preussischen Geologischen Landesanstalt, Neue Folge, 158:175.Google Scholar
Regnard, C. H. 1926. Notice sur les Spongiaires cénomaniens de Coulonges-lés-Sablons (Orne). Historique et Hexactinellides. Bulletin de la Société Géologique de France, 25:469488.Google Scholar
Reid, R. E. H. 1958. Remarks on the Upper Cretaceous Hexactinellida of County Antrim. Irish Naturalists' Journal, 12:236243, 261-268.Google Scholar
Reid, R. E. H. 1968. Bathymetric distributions of Calcarea and Hexactinellida in the present and the past. Geological Magazine, 105:546559.Google Scholar
Reid, R. E. H. 2004a. Mesozoic and Cenozoic lithistid demosponges: Tetracladina, p. 199237. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology. Pt. E. Porifera, Revised. Volume 3: Porifera (Demospongea, Hexactinellida, Heteractinida, Calcarea). The Geological Society of America and The University of Kansas, Boulder and Lawrence.Google Scholar
Reid, R. E. H. 2004b. Mesozoic and Cenozoic lithistid demosponges: Dicranocladina, Pseudorhizomorina, Didymmorina, Helomorina, Megamorina, Megarhizomorina, Sphaerocladina, and order and suborder uncertain, p. 239274. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology. Pt. E. Porifera, Revised. Volume 3: Porifera (Demospongea, Hexactinellida, Heteractinida, Calcarea). The Geological Society of America and The University of Kansas, Boulder and Lawrence.Google Scholar
Reid, R. E. H. 2004c. Mesozoic and Cenozoic lithistid demosponges: Rhizomorina and suborder uncertain, p. 275316. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology. Pt. E. Porifera, Revised. Volume 3: Porifera (Demospongea, Hexactinellida, Heteractinida, Calcarea). The Geological Society of America and The University of Kansas, Boulder and Lawrence.Google Scholar
Reid, R. E. H. 2004d. Mesozoic and Cenozoic hexactinellid sponges: Lyssacinosa and Hexactinosa, p. 449511. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology. Pt. E. Porifera, Revised. Volume 3: Porifera (Demospongea, Hexactinellida, Heteractinida, Calcarea). The Geological Society of America and The University of Kansas, Boulder and Lawrence.Google Scholar
Reid, R. E. H. 2004e. Mesozoic and Cenozoic hexactinellid sponges: Lychniscosa and order uncertain, p. 513556. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology. Pt. E. Porifera, Revised. Volume 3: Porifera (Demospongea, Hexactinellida, Heteractinida, Calcarea). The Geological Society of America and The University of Kansas, Boulder and Lawrence.Google Scholar
Reiswig, H. M. 2002. Family Craticulariidae Rauff, 1893 (Recent), p. 12871289. In Hooper, J. N. A. and Van Soest, R. W. M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Press, Amsterdam.Google Scholar
Reuss, A. E. 1846. Die Versteinerungen der böhmischen Kreideformation. E. Schweizerbart'sche Verlagsbuchhandlung und Druckerei, Stuttgart, 148 p.Google Scholar
Rezvoy, P. D., Zuravleva, I. T., and Kolmun, V. M. 1962. Phylum Porifera, p. 1874. In Sokolov, B. S. (ed.), Osnovy Paleontologii, Gupki, archeociaty, kisecnopolostnye, cervi. Akademia Nauk SSSR, Moskva, 485 p. (In Russian).Google Scholar
Rigby, J. K. 1983. A first report of Cretaceous sponges from the Carnarvon Basin in Western Australia. Journal of Paleontology, 57:766772.Google Scholar
Rigby, J. K., Chin, K., Bloch, J. D., and Tweet, J. S. 2007. A new hexactinellid sponge from the Cretaceous of Devon Island, Canadian High Arctic. Canadian Journal of Earth Sciences, 44:12351242.Google Scholar
Rigby, J. K., Embree, P., and Murphy, M. 1996. An unusual Upper Cretaceous (Santonian) hexactinellid sponge from the Great Valley Sequence, western Sacramento Valley, northern California. Journal of Paleontology, 70:713717.Google Scholar
Rinaldi, C. A. (ed.). 1992. Geologia de la Isla James Ross. Instituto Antarctico Argentino, Direccion Nacional del Antarctico, Buenos Aires, 389 p.Google Scholar
Roemer, F. A. 1841. Die Versteinerungen des Norddeutschen Kreidegebirges. Hahn'schen Hofbuchhandlung, Hannover, 145 p.Google Scholar
Roemer, F. A. 1864. Die Spongitarien des norddeutschen Kreide-Gebirges. Verlag von Theodor Fischer, Cassel, 62 p.Google Scholar
Schmidt, O. 1870. Grundzuge einer Spongien-Fauna des atlantischen Gebietes. Jena, Leipzig, 88 p.Google Scholar
Schrammen, A. 1903. Zur Systematik der Kieselspongien. Mitteilungen aus dem Roemer Museum, Hildesheim, 19:121.Google Scholar
Schrammen, A. 1912. Die Kieselspongien der oberen Kreide von Nordwestdeutschland, II, Triaxonia (Hexactinellida). Palaeontographica Supplement, 5:177385.Google Scholar
Schulze, F. E. 1887. Über den Bau und das System der Hexactinelliden. Abhandlungen der Königlichen preussischen Akademie der Wissenschaften, 26:520558.Google Scholar
Scupin, H. 1913. Die Löwenberger Kreide und ihre Fauna. Palaeontographica Supplement, 6:1278.Google Scholar
Tabachnick, K. R., and Lévi, C. 1997. Les Craticulariidae sont spongiaires Hexactinellida Scopularia. Zoosystema, 19:714.Google Scholar
Thomas, D. H. 1935. On some sponges and a coral of Upper Cretaceous age from Toco Bay, Trinidad. Geological Magazine, 72:175179.Google Scholar
Trechmann, C. T. 1935. Fossils from the Northern Range of Trinidad. Geological Magazine, 72:166175.Google Scholar
Ulbrich, H. 1974. Die Spongien der Ilsenburg-Entwicklung (Oberes Unter-Campan) der Subherzynen Kreidemulde. Freiberger Forschungshefte, Paläontologie, C291:1121.Google Scholar
Vermeij, G. J. 1978. Biogeography and adaptation: Patterns of marine life. Harvard, London, 332 p.Google Scholar
Vinogradov, N. G. 1958. Vertikalnoe raspredelenie glubokovodnogo donnai faune okeana. Trudy Onstitut Okeanologii Akademii Nauk SSSR, 1958:86122. (In Russian).Google Scholar
Vodrážka, R. 2009. A new method for the extraction of macrofossils from calcareous rocks using sulphuric acid. Palaeontology, 52:187192.CrossRefGoogle Scholar
Vodrážka, R., Sklenář, J., Čech, S., Laurin, J., and Hradecká, L. 2009. Phosphatic intraclasts in shallow-water hemipelagic strata: a source of palaeoecological, taphonomic and biostratigraphic data (Upper Turonian, Bohemian Cretaceous Basin). Cretaceous Research, 30:204222.Google Scholar
Wagner, W. 1963. Die Schwammfauna der Oberkreide von Neuburg (Donau). Palaeontographica, Abt.A, 122:166250.Google Scholar
Whitham, A. G., Ineson, J. R., and Pirrie, D. 2006. Marine volcaniclastics of the Hidden Lake Formation (Coniacian) of James Ross Island, Antarctica: an enigmatic element in the history of a backarc basin, p. 2147. In Francis, J. E., Pirrie, D. and Crame, J. A. (eds.), Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica. Geological Society Special Publications, 258.Google Scholar
Wiese, F. and Wood, C. J. 2001. The hexactinellid sponge Cystispongia bursa (Quenstedt 1852) from the Turonian and Lower Coniacian (Upper Cretaceous) of northern Germany and England. Cretaceous Research, 22:377387.Google Scholar
Wrona, R. 2004. Cambrian microfossils from glacial erratics of King George Island, Antarctica. Acta Palaeontologica Polonica, 49:1356.Google Scholar
Žítt, J., Vodrážka, R., Hradecká, L., Svobodová, M., and Zágoršek, K. 2006. Late Cretaceous environments and communities as recorded at Chrtníky (Bohemian Cretaceous Basin, Czech Republic). Bulletin of Geosciences, 81:4379.CrossRefGoogle Scholar