Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T12:20:33.231Z Has data issue: false hasContentIssue false

Evolution and phylogenetic relationships of Neogene Corbulidae (Bivalvia; Myoidea) of tropical America

Published online by Cambridge University Press:  20 May 2016

Laurie C. Anderson
Affiliation:
Department of Geology and Geophysics, Louisiana State University, Baton Rouge 70803,
Peter D. Roopnarine
Affiliation:
Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco 94118,

Abstract

We used 24 fossil and Recent species to construct character states of both composite and exemplar taxa for phylogenetic analyses of Neogene genera and subgenera of the Corbulidae from tropical America. All characters were conchologic and two matrices, which differed in the manner that commarginal-rib characters were coded, were analyzed using branch and bound searches and maximum parsimony. Character polarity was determined using Corbula sensu strictu as an outgroup. These analyses produced a limited number of robust and well-resolved cladograms that require only one ghost lineage. Such stable results indicate a high level of congruency among characters, and demonstrate that conchologic data sets can yield highly resolved cladograms.

Tropical American corbulids are not monophyletic, and include two major clades. Crown groups within these clades are endemic, and all genera endemic to tropical America first appear in the Miocene. In fact, generic diversity and body size peak in the upper Miocene of the Caribbean/western Atlantic. Range restrictions and extinctions of large-bodied genera from both corbulid clades contribute to a post-Miocene decline in body size in this region. The eastern Pacific does not experience a similar decline in diversity and body size. Diversity and morphologic trends in Caribbean corbulids coincide with regional environmental changes, in particular decreases in seasonality and productivity. Except for the extinction of Bothrocorbula, however, corbulid extinctions apparently predate faunal turnover reported for other molluscs.

Associated with these extinctions, we found evidence of geographic range restriction, but not range shifts, in corbulid genera, indicating that the geologic development of environmental refugia contributed more to survival than eurytopy. Large-bodied genera of the southern Caribbean Gatunian Province (Tenuicorbula, Panamicorbula, and Hexacorbula) became restricted to the eastern Pacific. Range restriction to this high productivity refugium (i.e., paciphilic genera), rather than origination of new taxa, produced several corbulid genera now endemic to the region. Large-bodied genera from the Caloosahatchian Province of the southeastern U.S. (Bothrocorbula and Bicorbula), however, underwent global extinction. These subtropical and warm temperate taxa are presumably more eurytopic than their tropical counterparts, but do not exhibit range shifts in response to Neogene environmental change.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A., and Reeve, L. A. 1848–1850. Mollusca, x+87 p., 24 pls. In Adams, A. (ed.), The Zoology of the Voyage of H.M.S. Samarang, under the command of Captain Sir Edward Belcher, during the years 1843–1846. Reeve, Benham & Reeve, London.Google Scholar
Adamkewicz, S. L., Harasewych, M. G., Blake, J., Saudek, D., and Bult, C. J. 1997. A molecular phylogeny of the bivalve mollusks. Molecular Biology and Evolution, 146:619629.Google Scholar
de Cserna, G. Alencaster 1963. Pelecípodos del Jurásico Medio del noroeste de Oaxaca y noreste de Guerrero. Paleontologica Mexicana, 15:152, 8 pl.Google Scholar
Allmon, W. D. 1992. Whence southern Florida's Plio-Pleistocene shell beds?, p. 120. In Scott, T. M. and Allmon, W. D. (eds.), The Plio-Pleistocene Stratigraphy and Paleontology of Southern Florida. Florida Geological Survey Special Publication, 36.Google Scholar
Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. S. 1993. Diversity of Atlantic Coastal Plain mollusks since the Pliocene. Science, 260:16261629.Google Scholar
Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. 1996. Diversity of Pliocene-Recent mollusks in the western Atlantic: extinction, origination, and environmental change, p. 271302. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. The University of Chicago Press, Chicago.Google Scholar
Anderson, L. C. 1996. Neogene paleontology in the northern Dominican Republic 16. The family Corbulidae (Mollusca: Bivalvia). Bulletins of American Paleontology, 110:534.Google Scholar
Anderson, L. C. 2001. Temporal and geographic size trends in Neogene Corbulidae (Bivalvia) of tropical America: using environmental sensitivity to decipher causes of morphologic trends. Palaeogeography, Palaeoclimatology, Palaeoecology, 166:101120.Google Scholar
Anderson, L. C., and Roopnarine, P. D. 2001. Biogeographic significance of phylogenetic relationships among Neogene Corbulidae of tropical America. Geological Society of America, Abstracts with Programs, 33:A141.Google Scholar
Anderson, L. C., and Roopnarine, P. D. 2002. Biogeographic patterns of evolution and extinction among Neogene Corbulidae of tropical America. Proceedings of the First International Palaeontological Congress, Sydney, Australia, 5.Google Scholar
Anderson, L. C., and Roopnarine, P. D. 2003. Interplay of adaptation and constraint in morphospace utilization of Caryocorbula (Mollusca: Corbulidae) from the Caribbean Neogene. Palaeontologia Electronica, in press.Google Scholar
Bernard, F. 1895. Première note sur le developpement et la morphologie de la coquille chez les lamellibranches. Bulletin de la Société Géologique de France, 3rd series, 23:104154.Google Scholar
Bernard, F. 1897. Quatrième et derniére note sur le développement et la morphologie de la coquille chez les lamellibranches. Bulletin de la Société Géologique de France, 3rd series, 25:559566.Google Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics, 10:295304.Google Scholar
Brown, A. P., and Pilsbry, H. A. 1912. Fauna of the Gatun Formation, Isthmus of Panama-II. Proceedings of the Academy of Natural Sciences of Philadelphia, 62:519, 22–26 pl.Google Scholar
Campbell, D. C. 2000. Molecular evidence on the evolution of the Bivalvia, p. 3146. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), The Evolutionary Biology of the Bivalvia. Geological Society of London, Special Publications, 177.Google Scholar
Canapa, A., Barucca, M., Marinelli, A., and Olmo, E. 2001. A molecular phylogeny of Heterodonta (Bivalvia) based on small ribosomal subunit RNA sequences. Molecular Phylogenetics and Evolution, 21:156161.CrossRefGoogle ScholarPubMed
Coan, E. V. 2002. The eastern Pacific recent species of the Corbulidae (Bivalvia). Malacologia, 44:47105.Google Scholar
Collins, L. S. 1996. Environmental changes in Caribbean shallow waters relative to the closing tropical American seaway, p. 130167. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. The University of Chicago Press, Chicago.Google Scholar
Collins, L. S., Budd, A. F., and Coates, A. G. 1996a. Earliest evolution associated with closure of the Tropical American Seaway. Proceedings of the National Academy of Sciences, 93:60696072.Google Scholar
Collins, L. S., Coates, A. G., Berggren, W. A., Aubry, M.-P., and Zhang, J. 1996b. The late Miocene Panama isthmian strait. Geology, 24:687690.Google Scholar
Conrad, T. A. 1833. On some new fossil and recent shells of the United States. The American Journal of Science and Arts, 23:339346.Google Scholar
Conrad, T. A. 1846. Descriptions of new species of fossil and Recent shells and corals. Proceedings of the Academy of Natural Sciences of Philadelphia, 3:1927, 1 pl.Google Scholar
Cox, L. R. 1965. Jurassic Bivalvia and Gastropoda from Tanganyika and Kenya. Bulletin of the British Museum (Natural History) Geology, Supplement 1:1209, 30 pl.Google Scholar
Cronin, T. M. 1991. Pliocene shallow water paleoceanography of the North Atlantic Ocean based on marine ostracodes. Quaternary Science Reviews, 10:175188.Google Scholar
Dall, W. H. 1898. Contributions to the Tertiary fauna of Florida with especial reference to the Silex beds of Tampa and the Pliocene beds of the Caloosahatchie River, including in many cases a complete revision of the generic groups treated of and their American Tertiary species. Transactions of the Wagner Free Institute of Science of Philadelphia, 3(4):571947, pl. 23–35.Google Scholar
d'Orbingy, A. 1853?. Mollusques. In de la Sagra, R. (ed.), Histoire physique, politique, et naturelle de I'île de Cuba, A. Bertrand, Paris, 2 vol., 380 p., 28 pls.Google Scholar
Deshayes, G.-P. 1860. Description des animaux sans vertèbres. Découverts dans le bassin de Paris. Pour servir de supplément a la description des coquilles fossiles des environs de Paris comprenant une revue générale de toutes les espèses actuellement connues. Tome Premier-Texte. Mollusques acéphalés dimyaires accompayné d'un Atlas de 89 plances. Paris, J.-B. Baillière et Fils, Libraires de l-académie impériale de Médecine, 912 p.Google Scholar
Duff, K. L. 1978. Bivalvia from the English Lower Oxford Clay (Middle Jurassic). Palaeontographical Society Monograph, 132(No. 553):1137, 1–13 pl.CrossRefGoogle Scholar
Fürsich, F. T. 1981. Jurassicorbula n. g., a new bivalve genus from the Upper Jurassic of Portugal. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 12:737741.Google Scholar
Fürsich, F. T., Heinze, M., and Jaitly, A. K. 2000. Contributions to the Jurassic of Kachchh, western India. VIII. The bivalve fauna. Part IV. Subclass Heterodonta. Beringeria, 27:63146.Google Scholar
Gardner, J. 1926. The nomenclature of the superspecific groups of Corbula in the lower Miocene of Florida. The Nautilus, 40:4147.Google Scholar
Gardner, J. 1928. The mollscan fauna of the Alum Bluff Group of Florida, Pt. V, Tellinacea, Solenacea, Mactracea, Myacea, Molluscoidea. U.S. Geological Survey Professional Paper, 142-E:185240, 29–36 pl.Google Scholar
Gardner, J. 1943. Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina, Pt. 1, Pelecypoda. With a summary of the stratigraphy of W. C. Mansfield. U.S. Geological Survey Professional Paper, 199-A:1178, 1–23 pl.Google Scholar
Giribet, G., and Wheeler, W. 2002. On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology, 12:271324.Google Scholar
Guppy, R. H. L. 1866. On the Tertiary Mollusca of Jamaica. Geological Society of London, Quarterly Journal, 22:281295, 16–18 pl.Google Scholar
Harasewych, M. G. 1984. Comparative anatomy of four primitive muricacean gastropods: implications for trophonine phylogeny. American Malacological Bulletin, 3:1126.Google Scholar
Harper, E. M., Palmer, T. J., and Hudson, J. D. 2002. The Middle Jurassic bivalve ‘Cupsidaria’ ibbestsoni: a corbulid not a septibranch. Palaeontology, 45:759769.Google Scholar
Hartman, J. H., and Anderson, L. C. 2002. Interpreting the influence of the last interior seaway in North Dakota (Paleocene, Cannonball Formation) in nonmarine strata (Fort Union Group): reevaluation of a corbulid using an Amazonian analogue. Geological Society of America Abstracts with Programs, 34:355.Google Scholar
Hooghiemstra, H., and van der Hammen, T. 1998. Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth-Science Reviews, 44:147183.Google Scholar
Ibaraki, M. 1997. Closing of the Central American Seaway and Neogene coastal upwelling along the Pacific coast of South America. Tectono-physics, 281:99104.Google Scholar
Ishman, S. E. 1996. A benthic foraminiferal record of middle to late Pliocene (3.15–2.85 Ma) deep water change in the North Atlantic. Marine Micropaleontology, 27:165180.Google Scholar
Jackson, J. B. C., Jung, P., and Fortunato, H. 1996. Paciphilia revisited: transisthmian evolution of the Strombina group (Gastropoda: Columbellidae), p. 234270. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. The University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., Todd, J. A., Fortunato, H., and Jung, P. 1999. Diversity and assemblages of Neogene Caribbean Mollusca of lower Central America, p. 193230. In Collins, L. and Coates, A. (eds.), A Paleobiotic Survey of Caribbean Faunas of the Neogene of the Isthmus of Panama. Bulletins of American Paleontology, 357.Google Scholar
Jones, D. S., and Hasson, P. F. 1985. History and development of the marine invertebrate faunas separated by the Central American Isthmus, p. 325355. In Stehli, F. G. and Webb, S. D. (eds.), The Great American Biotic Interchange. Plenum Press, New York.Google Scholar
Jung, P. 1969. Miocene and Pliocene mollusks from Trinidad. Bulletins of American Paleontology, 55:289657, 13–60 pl.Google Scholar
Kanjilal, S. 1997. Corbula (Corbula) haboensis n. sp. (Bivalvia) from the Callovian (Middle Callovian) sediments of the Habo Hills, Kachchh, western India: its functional morphology and inferred habit and habitat. Indian Journal of Geology, 69:294299.Google Scholar
Keigwin, L. 1982. Isotopic paleoceanography of the Caribbean and east Pacific: role of Panama uplift in late Neogene time. Science, 217:350353.Google Scholar
Kleiven, H. F., Jansen, E., Fronval, T., and Smith, T. M. 2002. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma)—ice-rafted detritus evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 184:213223.Google Scholar
Lamarck, J. B. P. A. de M. de. 1801. Système des amimaux sans vertèbres, our tableau général des classes, des ordres et des genres de ces animaux. chez l'auteur & Deterville, Paris, 432 p.Google Scholar
Lea, I. 1833. Contributions to geology (Tertiary formation of Alabama: new Tertiary fossil shells from Maryland and New Jersey; New genus of fossil shell from New Jersey; Tufaceous lacustrine formation of Syracuse, Onondaga Co., N.Y.), Philadelphia, 227 pp.Google Scholar
Lundberg, J. G., Marshall, L. G., Guerrero, J., Horton, B., Malabarba, M. C. S. L., and Wesselingh, F. 1998. The stage for neotropical fish diversification: a history of tropical South American rivers, p. 1348. In Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M. S., and Lucena, C. A. S. (eds.), Phylogeny and Classification of Neotropical Fishes. EDIPUCRS, Porto Alegre, Brasil.Google Scholar
McLearn, F. H. 1924. New pelecypods from the Fernie Formation of the Alberta Jurassic. Transactions of the Royal Society of Canada, Series 3, 18 (Section 4):3961, 1–9 pl.Google Scholar
Mikkelsen, P. M., and Bieler, R. 2001. Varicorbula (Bivalvia: Corbulidae) of the western Atlantic: taxonomy, anatomy, life habits, and distribution. The Veliger, 44:271293.Google Scholar
Miller, D. J. 1999. Making the most of your shells: constructional and microarchitectural characters in muricid gastropod systematics. Geological Society of America Abstracts with Programs, 31:A-42.Google Scholar
Millard, V. 1997. Classification of Mollusca: A Classification of World Wide Mollusca. Author, Rhine Road, South Africa, 544 p.Google Scholar
Morton, B. 1990. The biology and functional morphology of Corbula crassa (Bivalvia: Corbulidae) with special reference to shell structure and formation, p. 10551073. In Morton, B. (ed.), The Marine Flora and Fauna of Hong Kong and Southern China II. Volume 3. Behaviour, Morphology, Physiology and Pollution. Hong Kong University Press, Hong Kong.Google Scholar
Olivi, G. 1792. Zoologia Adriatica ossia catalogo ragionato degli animali del Golfo e delle Lagune di Venezia. Bassano, 334 p., 9 pls.Google Scholar
Olsson, A. A. 1961. Mollusks of the tropical eastern Pacific particularly from the southern half o the Panamic-Pacific faunal province (Panama to Peru): Panama-Pacific Pelecypoda. Paleontological Research Institution, Ithaca, New York, 574 pp., 86 pls.Google Scholar
Olsson, A. A. 1964. Neogene mollusks from northwestern Ecuador. Paleontological Research Insitution, Ithaca, New York, 256 p., 38 pls.Google Scholar
Petuch, E. J. 1982. Geographical heterochrony: contemporaneous coexistence of Neogene and recent molluscan faunas in the Americas. Palaeogeography, Palaeoclimatology, Palaeoecology, 37:277312.Google Scholar
Philippi, R. A. 1848. Beschreibung zweier neuer Conchylien aus der Sammlung des Herrn Consul Gruner in Bermen. Zeitschrift für Malakozoologie, 5:1327.Google Scholar
Prueher, L. M., and Rea, D. K. 1998. Rapid onset of glacial conditions in the subarctic North Pacific region at 2.67 Ma: clues to causality. Geology, 26:10271030.Google Scholar
Purchon, R. D. 1990. Stomach structure, classification and evolution of the Bivalvia, p. 7382. In Morton, B. (ed.), The Bivalvia–Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge. Hong Kong University Press, Hong Kong.Google Scholar
Roopnarine, P. D. 1996. Systematics, biogeography and extinction of chionine bivalves (Bivalvia: Veneridae) in tropical American: early Oligocene-Recent. Malacologia, 38:103142.Google Scholar
Roopnarine, P. D. 2001. History of diversification, extinction, and invasion in tropical America as derived from species-level phylogenies of chionine genera (Family Veneridae). Journal of Paleontology, 75:644657.Google Scholar
Schneider, J. A., and Carter, J. G. 2001. Evolution and phylogenetic significance of cardioide shell microstructure (Mollusca, Bivalvia). Journal of Paleontology, 75:607643.Google Scholar
Seyfried, H., Sprechmann, P., and Aguilar, T. 1985. Sedimentología y paleoecología de un estuario del litoral Pacífico del Istmo Centroamericano primordial (Mioceno Medio, Costa Rica). Revista Geológica de America Central, 3:168.Google Scholar
Singh, C. S. P., and Rai, J. N. 1980. Bathonian-Callovian fauna of western Bela Island (Kutch): Pt 1- bivalve families Cardiidae, Neomiodontidae and Corbulidae. Journal of the Palaeontological Society of India, 23–24:7180, 71 pl.Google Scholar
Sowerby, G. B.I. 1833. [Characters of new species of Mollusca and Conchifera, collected by Hugh Cumings]. Proceedings of the Zoological Society of London, for 1833:3438.Google Scholar
Starobogatov, Y. I. 1992. Morphological basis for phylogeny and classification of Bivalvia. Ruthenica, 2:125.Google Scholar
Steiner, G., and Hammer, S. 2000. Molecular phylogeny of the Bivalvia inferred from 18S rDNA sequences with particular reference to the Pteriomorphia, p. 1129. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), The Evolutionary Biology of the Bivalvia. Geological Society of London, Special Publications, 177.Google Scholar
Swofford, D. L. 2002. PAUP. Phylogenetic Analysis Using Parsimony ( and Other Methods), version 4.b10. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Teranes, J. L., Geary, D. H., and Bemis, B. E. 1996. The oxygen isotopic record of seasonality in Neogene bivalves from the Central American Isthmus, p. 105129. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. The University of Chicago Press, Chicago.Google Scholar
Todd, J. A., Jackson, J. B. C., Johnson, K. G., Fortunato, H. M., Heitz, A., Alvarez, M., and Jung, P. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London. B, 269:571577.Google Scholar
Toula, F. 1909. Eine jungtertiäre Fauna von Gatun am Panama-Kanal. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt, 58:673760, 25–28 pl.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation: Patterns of Marine Life. Harvard University Press, Cambridge, Massachusetts, 332 p.Google Scholar
Vermeij, G. J., and Carlson, S. J. 2000. The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology, 26:1946.Google Scholar
Vermeij, G. J., and Petuch, E. J. 1986. Differential extinction in tropical American molluscs: endemism, architecture, and the Panama Land Bridge. Malacologia, 27:2941.Google Scholar
Vokes, H. E. 1945. Supraspecific groups of the pelecypod family Corbulidae, Bulletin of the American Museum of Natural History, 86:132.Google Scholar
Wagner, P. J. 2001. Gastropod phylogenetics: progress, problems, and implications. Journal of Paleontology, 75:11281140.Google Scholar
Waller, T. R. 1998. Origin of the molluscan class Bivalvia and a phylogeny of major groups, p. 145. In Johnston, P. A. and Haggart, J. W. (eds.), Bivalves: An Eon of Evolution. University of Calgary Press, Calgary.Google Scholar
Woodring, W. P. 1982. Geology and paleontology of Canal Zone and adjoining parts of Panama. Description of Tertiary mollusks (pelecypods: Propeamussiidae to Cuspidariidae; additions to families covered in P 306-E; additions to gastropods; cephalopods). U.S. Geological Survey Professional Paper, 306-F:541759, 83–124 pl.Google Scholar
Yin, J., and Fürsich, F. T. 1991. An endemic brackish water faunule from the Middle Jurassic of southern Qinghai province, China. Paläontologische Zeitschrift, 65:105117.Google Scholar