Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-09T06:20:43.984Z Has data issue: false hasContentIssue false

Earltonella fredricksi n. gen n. sp. and Thalassocystis striata (Chlorophyta, Bryopsidales) from the Silurian (Llandoverian) of the Timiskaming outlier, Ontario, Canada

Published online by Cambridge University Press:  13 October 2022

Steven T. LoDuca*
Affiliation:
Department of Geography and Geology, Eastern Michigan University, Ypsilanti, Michigan, 48197, USA
Mike Meacher
Affiliation:
Stormbed Paleontological, PO Box 393, Rodney, Ontario, N0L2C0, Canada
Mark Pepper
Affiliation:
Stormbed Paleontological, PO Box 393, Rodney, Ontario, N0L2C0, Canada
Kevin Brett
Affiliation:
671 4e Rang Est, La Durantaye, Quebec, G0R 1W0, Canada
Phillip A. Isotalo
Affiliation:
93 Napier Street, Kingston, Ontario, K7L 4G2, Canada
*
*Corresponding author.

Abstract

Specimens of macroalgae are reported and described herein from newly discovered algal-Lagerstätten within the Llandoverian Earlton Formation at two localities separated by a distance of 45 km in the Timiskaming outlier of Ontario, Canada. Both localities are characterized by abundant specimens of the Codium-like bryopsidalean green alga Thalassocystis striata, the details of which, including within-assemblage morphological variation, compare closely to material from the type locality. Previously, this noncalcified taxon was known only from the Llandoverian Schoolcraft Formation in northern Michigan, ~500 km to the west. These new occurrences provide additional evidence that the alga-bearing intervals within the Earlton Formation at both Timiskaming localities correlate with the Schoolcraft Formation in the Michigan Basin. An associated noncalcified form at one of the Timiskaming localities is described as a new genus and species, Earltonella fredricksi LoDuca, n. gen. n. sp., the thallus architecture of which, with a creeping, runner-like stolon and numerous pinnate fronds, broadly resembles that of the living bryopsidalean alga Caulerpa. In broader terms, these new algal-Lagerstätten indicate that for a brief time during the late Llandoverian, as with other times during the Silurian, unusual conditions conducive to both the proliferation and preservation of expansive ‘seaweed meadows’ were established across regional-scale areas of the Laurentian epeiric sea.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agardh, C.A., 1817, Synopsis Algarum Scandinaviae: Adjecta Dispositione Universali Algarum: Lundae, Ex officina Berlingiana, 135 p.CrossRefGoogle Scholar
Al-Musawi, M., 2019, Chronostratigraphic Correlation of the Burnt Bluff Group Across the Michigan Basin, USA [M.Sc. thesis]: Kalamazoo, Michigan, Western Michigan University, 76 p.Google Scholar
Ausich, W.I., Wilson, M.A., and Tinn, O., 2020, Kalana Lagerstätte crinoids: Early Silurian (Llandovery) of central Estonia: Journal of Paleontology, v. 94, p. 131144.Google Scholar
Billings, E., 1866, Catalogue of the Silurian fossils of the island of Anticosti, with descriptions of some new genera and species: Geological Survey of Canada, Separate Report, v. 427, p. 193.Google Scholar
Bolton, T.E., and Copeland, M.J., 1972, Paleozoic formations and Silurian biostratigraphy, Lake Timiskaming region, Ontario and Quebec: Geological Survey of Canada, Paper 72-15, 49 p.Google Scholar
Borowitzka, M.A., 1986, Physiology and biochemistry of calcification in the Chlorophyceae, in Leadbeater, B.S.C., and Riding, R., eds., Biomineralization in Lower Plants and Animals: Oxford, UK, Clarendon Press, p. 107124.Google Scholar
Bykova, N., LoDuca, S.T., Ye, Q., Marusin, V., Grazhdankin, D., and Xiao, S., 2020, Seaweeds through time: morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae: Precambrian Research, 350, 105875. https://doi.org/10.1016/j.precamres.2020.105875.CrossRefGoogle Scholar
Chatterton, B.D.E, and Ludvigsen, R., 2004, Early Silurian trilobites of Anticosti Island, Québec, Canada: Palaeontographica Canadiana 22, p. 1264.Google Scholar
Colville, V.R., and Johnson, M.E., 1982, Correlation of sea-level curves for the Lower Silurian of the Bruce Peninsula and Lake Timiskaming District (Ontario): Canadian Journal of Earth Sciences, v. 19, p. 962997.CrossRefGoogle Scholar
Conway Morris, S., and Robison, R.A., 1988, More soft-bodied animals and algae from the middle Cambrian of Utah and British Columbia: The University of Kansas Paleontological Contributions, v. 122, p. 148.Google Scholar
Copper, P., and Armstrong, D.K., 1999, Ordovician and Silurian fossils and strata of the Lake Timiskaming outlier: Field Trip B2 Guidebook for Geological Association of Canada and Mineralogical Association of Canada Joint Annual Meeting, 1999, Sudbury, Ontario, 31 p.Google Scholar
Del Cortona, A., Jackson, C.J., Bucchini, F., Van Bel, M., D'hondt, S., et al. , 2020, Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds: Proceedings of the National Academy of Sciences, USA, v. 117, p. 25512559.Google ScholarPubMed
Draisma, S.G.A., Prud'homme van Reine, W.F., Sauvage, T., Belton, G.S., Gurgel, C.F.D., Lim, P.E., and Phang, S.M., 2014, A re-assessment of the infra-generic classification of the genus Caulerpa (Caulerpaceae, Chlorophyta) inferred from a time-calibrated molecular phylogeny: Journal of Phycology, v. 50, p. 10201034.Google ScholarPubMed
Famà, P., Wysor, B., Kooistra, W.H.C.F., and Zuccarello, G.C., 2002, Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene: Journal of Phycology, v. 38, p. 10401050.CrossRefGoogle Scholar
Fatka, O., and Vodička, J., 2022, Putative Ordovician green alga Krejciella reinterpreted as enteropneust hemichordate tube (Czech Republic): Palaeontologia Electronica, v. 25, 2.a25. https://doi.org/10.26879/1185.Google Scholar
Hall, J., 1858, On the genus Graptolithus: Canadian Naturalist and Geologist and Proceedings of the Natural History Society of Montreal, v. 3, p. 162177.Google Scholar
Hall, J., 1861, Report of the superintendent of the Geological Survey [of Wisconsin], exhibiting the progress of the work, January 1, 1861 (including descriptions of new species of fossils from the investigations of the Survey): Madison, Wisconsin, E.A. Calkins & Co., 52 p.Google Scholar
Harvey, W.H., 1858, Contributions to a history of the marine algae of North America. Part III. Chlorospermeae: Smithsonian Contributions to Knowledge, v. 10, p. 1140.Google Scholar
Havlíček, V., Vaněk, J., and Fatka, O., 1993, Floating algae of the genus Krejciella as probable hosts of epiplanktic organisms (Dobrotiv Series, Ordovician: Prague Basin): Journal of the Czech Geological Society, v. 38, p. 7988.Google Scholar
Henry, L.-A., and Kenchington, E.L.R., 2004, Ecological and genetic evidence for impaired sexual reproduction and induced clonality in the hydroid Sertularia cupressina (Cnidaria: Hydrozoa) on commercial scallop grounds in Atlantic Canada: Marine Biology, v. 145, p. 11071118.CrossRefGoogle Scholar
Høeg, O.A., 1927, Dimorphosiphon rectangulare. Preliminary note on a new Codiacea from the Ordovician of Norway: Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo, Matemattikk-Naturvitenskap Klasse, v. 4, p. 115.Google Scholar
Howe, M.A., 1905, Phycological studies—II. New Chlorophyceae, new Rhodophyceae and miscellaneous notes: Bulletin of the Torrey Botanical Club, v. 32, p. 563586.CrossRefGoogle Scholar
Hume, G.S., 1925, The Palaeozoic outlier of Lake Timiskaming, Ontario and Quebec: Geological Survey of Canada Memoir, v. 145, p. 1129.Google Scholar
Kolata, D.R., 2021, Fossils of the Upper Ordovician Platteville Formation in the Upper Midwest USA: An Overview: Urbana-Champaign, Illinois State Geological Survey, Prairie Research Institute, 328 p.Google Scholar
Kraft, P., Kraft, J. and Prokop, R.J., 2001, A possible hydroid from the Lower and Middle Ordovician of Bohemia: Alcheringa, v. 25, p. 143154.CrossRefGoogle Scholar
Lamouroux, J.V.F., 1809, Observations sur la physiologie des algues marines, et description de cinq nouveaux genres de cette famille: Nouveau Bulletin des Sciences de la Société Philomathique de Paris, v. 1, p. 330333.Google Scholar
LoDuca, S.T., 2019, New Ordovician marine macroalgae from North America, with observations on Buthograptus, Callithamnopsis, and Chaetocladus: Journal of Paleontology, v. 93, p. 197214.CrossRefGoogle Scholar
LoDuca, S.T., and Behringer, E.R., 2009, Functional morphology and evolution of early Paleozoic dasycladalean algae (Chlorophyta): Paleobiology, v. 35, p. 6376.CrossRefGoogle Scholar
LoDuca, S.T., and Brett, C.E., 1997, The Medusaegraptus epibole and Ludlovian Konservat-Lagerstätten of eastern North America, in Brett, C.E., and Baird, G., eds., Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications: New York, Columbia University Press, p. 369405.Google Scholar
LoDuca, S.T., Bykova, N., Wu, M., Xiao, S. and Zhao, Y., 2017, Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: a tale of two floras: Geobiology, v. 15, p. 588616.CrossRefGoogle ScholarPubMed
LoDuca, S.T., Swinehart, A.L., LeRoy, M.A., Tetreault, D., and Steckenfinger, S., 2021, Codium-like taxa from the Silurian of North America: morphology, taxonomy, paleoecology, and phylogenetic affinity: Journal of Paleontology, v. 95, p. 207235.CrossRefGoogle Scholar
Mamet, B., and Préat, A., 1985, Sur quelques algues vertes nouvelles du Givétien de la Belgique: Revue de Micropaléontologie, v. 28, p. 6774.Google Scholar
Muscente, A.D., and Allmon, W.D., 2013, Revision of the hydroid Plumalina Hall, 1858 in the Silurian and Devonian of New York: Journal of Paleontology, v. 87, p. 710725.CrossRefGoogle Scholar
Nanglu, K., Caron, J.-B., Conway Morris, S., and Cameron, C.B., 2016, Cambrian suspension-feeding tubicolous hemichordates: BMC Biology 14, 56. https://doi.org/10.1186/s12915-016-0271-4.CrossRefGoogle ScholarPubMed
Obrhel, J., 1968a, Maslovina meyenii n. g. et n. sp. neue Codiacea aus dem Silur Bohmens: Věstník Českého Geologického Ústavu, v. 43, p. 367370.Google Scholar
Obrhel, J., 1968b, Neue Pflanzenfunde im mittelböhmischen Ordovizium: Věstník Ústředního Ústavu Geologického, v. 43, p. 463464.Google Scholar
Pentecost, A., 1991, Calcification processes in algae and cyanobacteria, in Riding, R., ed., Calcareous Algae and Stromatolites: Berlin, Springer, p. 320.CrossRefGoogle Scholar
Reichenbach, H.G.L., 1828, Conspectus Regni Vegetabilis: Leipzig, Carl Cnobloch, 132 p.Google Scholar
Radcliffe, G., 1998, Biotic Recovery of Conodonts Following the End-Ordovician Mass Extinction [Ph.D. dissertation]: Durham, UK, University of Durham, 267 p.Google Scholar
Russell, D.J., 1984, Paleozoic Geology of the Lake Timiskaming area: Ontario Geological Survey, Preliminary Map P2700, scale 1:50,000. http://www.geologyontario.mndm.gov.on.ca/mndmaccess/mndm_dir.asp?type=pub&id=P2700.Google Scholar
Sass, D.B., and Rock, B.N., 1975, The genus Plumalina Hall, 1858 (Coelenterata)—re-examined: Bulletins of American Paleontology, v. 67, p. 407422.Google Scholar
Schaffner, J.H., 1922, The classification of plants XII: Ohio Journal of Science, v. 22, p. 129139.Google Scholar
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis: Nature Methods, vol. 9, p. 671675.Google ScholarPubMed
Song, X., Ruthensteiner, B., Lyu, M., Liu, X., Wang, J., and Han, J., 2021, Advanced Cambrian hydroid fossils (Cnidaria: Hydrozoa) extend the medusozoan evolutionary history: Proceedings of the Royal Society B, 288, 20202939. https://doi.org/10.1098/rspb.2020.2939.CrossRefGoogle ScholarPubMed
Stackhouse, J., 1797, Nereis Britannica; continens species omnes fucorum in insulis britannicis crescentium: descriptione latine et anglico, necnon iconibus ad vivum depictis, Fasc. 2: Bath, UK, S. Hazard, p. 3170.Google Scholar
Stolley, E., 1893, Uber Silurische Siphoneen: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, v. 2, p. 135146.Google Scholar
Taggart, R.E., and Parker, L.R., 1976, A new fossil alga from the Silurian of Michigan: American Journal of Botany, v. 63, p. 13901392.Google Scholar
Taylor, W.R., 1960, Marine Algae of the Eastern Tropical and Subtropical Coasts of the Americas: Ann Arbor, Michigan, University of Michigan Press, 870 p.Google Scholar
Tinn, O., Meidla, T., Ainsaar, L., and Pani, T., 2009, Thallophytic algal flora from a new Silurian Lagerstätte: Estonian Journal of Earth Sciences, v. 58, p. 3842.Google Scholar
Vachard, D., Bucur, I., and Munnecke, A., 2022, Vitinellopsis nov. gen., a new calcareous alga (Chlorophyta, Bryopsidales) from the Silurian of Gotland (Sweden), and the tribe Vitinelleae nov. nom: Geobios, v. 70, p. 7585.Google Scholar
Verbruggen, H., Ashworth, M., LoDuca, S.T., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F., Littler, D., Littler, M., Leliaert, F., and De Clerk, O., 2009, A multi-locus time-calibrated phylogeny of the siphonous green algae: Molecular Phylogenetics and Evolution, v. 50, p. 642653.CrossRefGoogle ScholarPubMed
Walcott, C.D., 1931, Addenda to descriptions of Burgess Shale fossils: Smithsonian Miscellaneous Collections, v. 85, p. 146.Google Scholar
Wang, Y., Jin, J., and Zhan, R., 2014, A new noncalcified thallophytic alga from the Lower Silurian of Anticosti Island, eastern Canada: International Journal of Plant Sciences, v. 175, p. 359368.CrossRefGoogle Scholar
Weber-van Bosse, A. 1896. On a new genus of Siphonean algae—Pseudocodium: Journal of the Linnean Society of London, Botany, v. 32, p. 209212.Google Scholar
Whitfield, R.P., 1894, On new forms of marine algae from the Trenton Limestone, with observations on Buthograptus laxus Hall: American Museum of Natural History Bulletin, v. 6, p. 351358.Google Scholar
Wu, M., Zhao, Y., Tong, J., and Yang, R., 2011, New macroalgal fossils of the Kaili Biota in Guizhou Province, China: Science China Earth Sciences, v. 54, p. 93100.Google Scholar
Ye, Q., Tong, J., Xiao, S., Zhu, S., An, Z., Tian, L., and Hu, J., 2015, The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth: Geology, v. 43, p. 507510.CrossRefGoogle Scholar