Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-08T17:30:30.799Z Has data issue: false hasContentIssue false

Earliest western Atlantic staghorn corals (Acropora) from the lower Oligocene Suwannee Limestone of Florida, USA, and their significance for modern coral distribution

Published online by Cambridge University Press:  09 June 2022

Carden C. Wallace
Affiliation:
Biodiversity and Geosciences Program, Queensland Museum, Brisbane, Queensland 4101, Australia
Roger W. Portell*
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA,
*
*Corresponding author.

Abstract

The Suwannee Limestone of Florida and Georgia, USA, is a carbonate paleoenvironment with a rich diversity of marine fossils. These record the presence of coral- and seagrass-bearing communities in the western Atlantic from the Eocene/Oligocene boundary to the mid Oligocene (33.9–28.1 Ma). From the Suwannee Limestone, we describe two new species of the cosmopolitan, diverse, and abundant coral genus Acropora (“staghorn corals”), Acropora suwanneensis new species and Acropora upchurchi new species, which predate all other described Acropora species from the Americas and Caribbean by at least 10 million years. Diminutive skeletal structure in both species is indicative of their living in protected calm-water habitats. At their time of occurrence, an Atlantic–Pacific connection was open through Central America. Both species belong to morphological lineages also present in the fossil record of the eastern Atlantic (Europe, or the western Tethys). These lineages no longer occur in the Atlantic Ocean, but they are extant in the Indo-Pacific region, with the closest modern relative of each new species occurring in the Pacific Ocean to central Indo-Pacific. Some species in the two morphological lineages have existed for up to 20+ million years. The new species may have played a part in perpetuating a cosmopolitan Tethyan fauna and expanding Acropora habitats in the western Atlantic, by which they likely also contributed to the renowned species and habitat diversity of Acropora in the modern Indo-Pacific.

UUID https://zoobank.org/40118623-8b82-4352-a065-b58da74a5c41

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anguilar-Perera, A., and Hernández-Landa, R.C., 2018, Occurrence of large thickets of Acropora prolifera (Scleractinia: Acroporidae) in the southern Gulf of Mexico: Marine Biodiversity, v. 48, p. 22032205.CrossRefGoogle Scholar
Aronson, R., Bruckner, A., Moore, J., Precht, B., and Weil, E., 2008a, Acropora cervicornis: The IUCN Red List of Threatened Species 2008. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T133381A3716457.en [Dec 2019]Google Scholar
Aronson, R., Bruckner, A., Moore, J., Precht, B., and Weil, E., 2008b, Acropora palmata: The IUCN Red List of Threatened Species 2008. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T133006A3536699.en [Dec 2019]Google Scholar
Baron-Szabo, R.C., 2006, Corals of the K/T boundary: scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipidogyrina and Amphiastaena: Journal of Systematic Palaeontology, v. 4, p. 1108.CrossRefGoogle Scholar
Berggren, W.A., and Hollister, C.D., 1974, Paleogeography, paleobiogeography and the history of circulation in the Atlantic Ocean: Society of Economic Paleontologists and Mineralogists Special Publication, v. 20, p. 126186.Google Scholar
Boschma, H., 1961, Acropora Oken, 1815, (Anthozoa, Madreporaria): proposed validation under the plenary powers: Bulletin of Zoological Nomenclature, v. 18, p. 334335.Google Scholar
Bosellini, F.R., and Russo, A., 1992, The Castro Limestone: stratigraphy and facies of an Oligocene fringing reef (Salento Peninsula, Southern Italy): Facies, v. 26, p. 145166.CrossRefGoogle Scholar
Bourne, G.C., 1900, The Anthozoa, in Lankester, E.R., ed., A Treatise on Zoology, Part 2: London, Adam and Black, p. 80.Google Scholar
Bouvé, T.T., 1846, Pygorhynchus gouldii, a new Echinus from the Millstone Grit of Georgia: Proceedings of the Boston Society of Natural History, v. 2, p. 192.Google Scholar
Brewster-Wingard, G.L., Scott, T.M., Edwards, L.E., Weedman, S.D., and Simmons, K.R., 1997, Reinterpretation of the peninsular Florida Oligocene: an integrated stratigraphic approach: Sedimentary Geology, v. 108, p. 207228.CrossRefGoogle Scholar
Bridge, T.C.L., Fabricius, K.E., Bongaerts, P., Wallace, C.C., Muir, P.R., Done, T.J. and Webster, J.M., 2012, Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia: Coral Reefs, v. 31, 179189.CrossRefGoogle Scholar
Brook, G., 1892, Preliminary descriptions of new species of Madrepora in the collections of the British Museum, Part 2: Annals and Magazine of Natural History, v. 10, p. 451465.CrossRefGoogle Scholar
Bryan, J.R., 1991, Stratigraphic and paleontologic studies of Paleocene and Oligocene carbonate facies of the eastern Gulf Coastal Plain [Ph.D. dissertation]: Knoxville, University of Tennessee, 348 p.Google Scholar
Budd, A.F., 2000, Diversity and extinction in the Cenozoic history of Caribbean reefs: Coral Reefs, v. 19, p. 2535.CrossRefGoogle Scholar
Budd, A.F., and Bosellini, F.R., 2016, Revision of Oligocene Mediterranean meandroid corals in the scleractinian families Mussidae, Merulinidae and Lobophylliidae: Journal of Systematic Palaeontology, v. 14, p. 771798.CrossRefGoogle Scholar
Budd, A.F., and Stolarski, J., 2009, Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae: Acta Zoologica, v. 90, p. 142165.CrossRefGoogle Scholar
Budd, A.F., Stemann, T., and Johnson, K., 1994, Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals: Journal of Paleontology, v. 68, p. 951997.CrossRefGoogle Scholar
China, W.E., 1963, Opinion 674: Acropora Oken, 1815 (Anthozoa, Madreporaria): validated under the plenary powers: Bulletin of Zoological Nomenclature, v. 20, p. 319330.Google Scholar
Cooke, C.W., and Mansfield, W.C., 1936, Suwannee Limestone of Florida: Geological Society of America Proceedings, 1935, p. 7172.Google Scholar
Cramer, K.L., Jackson, J.B.C., Donovan, M.K., Greenstein, B.J., Korpanty, C.A., Cook, G.M., and Pandolfi, J.M., 2020, Widespread loss of Caribbean acroporid corals was underway before coral bleaching and disease outbreaks: Science Advances, v. 6, n. eaax9395, https://doi.org/10.1126/sciadv.aax9395CrossRefGoogle ScholarPubMed
Dall, W.H., 1916, A contribution to the invertebrate fauna of the Oligocene beds of Flint River, Georgia: Proceedings of the U.S. National Museum, v. 51, p. 486524.CrossRefGoogle Scholar
Dana, J.D., 1846, Zoophytes, in Wilkes, C. et al. , The United States Exploring Expedition During the Years 1838, 1839, 1840, 1841, 1842, Under the Command of Charles Wilkes, U.S.N., Volume 7: Philadelphia, C. Sherman, 740 p.Google Scholar
Defrance, M.J.L., 1828 [1827], Dictionnaire des Sciences Naturelles, Volume 51: Paris, Levrault. 152 p.Google Scholar
DeVantier, L., and Turak, E., 2017, Species richness and relative abundance of reef-building corals in the Indo-West Pacific: Diversity, v. 9, no. 25, p. 130.CrossRefGoogle Scholar
Edinger, E.N., and Risk, M.J., 1994, Oligocene–Miocene extinction and geographic restriction of Caribbean corals: roles of turbidity, temperature, and nutrients: Palaios, v. 9, p. 576598.CrossRefGoogle Scholar
Ehrenberg, C.G., 1834, Beitrage zur physiologischen Kenntnis der Corallenthiere im allgemeinen, und besonders des rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben: Koniglischen Akademie der Wissenschaft, Physiologische-Mathematischen Abhandlung, 1832, p. 225380.Google Scholar
Frost, S.H., and Langenheim, R.L., 1974, Cenozoic Reef Biofacies. Tertiary Larger Foraminifera and Scleractinian Corals from Chiapas, Mexico: Chicago, Northern Illinois University Press, 388 p.Google Scholar
Gardner, T.A., Côte, I.M., Gill, J.A., Grant, A., and Watkinson, A.R., 2003, Long-term region-wide declines in Caribbean corals: Science, v. 301, p. 958960.CrossRefGoogle ScholarPubMed
Haeckel, E. 1896, Systematische Phylogenie der wirbellosen Thiere: Berlin, Reimer, https://doi.org/10.5962/bhl.title.3947CrossRefGoogle Scholar
Harzhauser, M., Kroh, A., Mandie, O., Piller, U.G., Göhlicht, U., Reuter, M., and Berning, B., 2007, Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethys Seaway: Zoologischer Anzeiger, v. 246, p. 241256.CrossRefGoogle Scholar
Hatschek, B., 1888–1891, Lehrbuch der Zoologie, eine morphologische übersicht des Thierreiches zur Einführung in das Studium dieser Wissenschaft. Lief 1–3: Jena, Gustav Fischer, iv + 432 p.Google Scholar
Herbert, G.S., and Portell, R.W., 2002, A new species of Attiliosa (Muricidae: Neogastropoda) from the upper Eocene/lower Oligocene Suwannee Limestone of Florida: The Veliger, v. 45, p. 303308.Google Scholar
Hoeksema, B.W., and Cairns, S., 2020, Acropora prolifera (Lamarck, 1816). http://www.marinespecies.org/aphia.php?p=taxdetails&id=288235 [Mar 2020]Google Scholar
Huddlestun, P.F., 1993, A revision of the lithostratigraphic units of the coastal plain of Georgia—the Oligocene: Georgia Geologic Survey Bulletin, v. 105, p. 1152.Google Scholar
International Commission on Stratigraphy, 2021, Interactive International Chronostratigraphic Chart. https://stratigraphy.org/timescale/ [Nov 2021]Google Scholar
Japaud, A., Bouchon, C., and Fauvelot, C., 2014, Unexpected high densities of the hybrid coral Acropora prolifera (Lamarck, 1816) in Gaudeloupe Island, Lesser Antilles: Coral Reefs, v. 33, p. 593.CrossRefGoogle Scholar
Johnson, K.G., and Kirby, M.X., 2006, The Emperador Limestone rediscovered: early Miocene corals from the Culebra Formation, Panama: Journal of Paleontology, v. 80, p. 283293.CrossRefGoogle Scholar
Johnson, K.G., Sanchez-Villagra, M.R., and Aguilera, O.A., 2009, The Oligocene–Miocene transition on coral reefs in the Falco Basin (NW Venezuela): Palaios, v. 24, p. 5969.CrossRefGoogle Scholar
Jones, D.S., and Portell, R.W., 1988, Occurrence and biogeographic significance of Heliaster (Echinodermata: Asteroidea) from the Pliocene of southwest Florida: Journal of Paleontology, v. 62, p. 126132.CrossRefGoogle Scholar
Jones, D.S., Mueller, P.A., Hodell, D.A., and Stanley, L.A., 1993, Strontium isotope geochronology of Oligocene and Miocene marine strata in Florida, in Zullo, V.A., Harris, W.B., Scott, T.M., and Portell, R.W., eds., The Neogene of Florida and Adjacent Regions: Proceedings of the Third Bald Head Island Conference on Coastal Plains Geology: Florida Geological Survey Special Publication No. 37, p. 1526.Google Scholar
Kahng, S., Copus, J.M., and Wagner, D., 2016, Mesophotic Coral Ecosystems, in Rossi, S., ed., Marine Animal Forests: Cham, Springer, p. 121.Google Scholar
Kiessling, W., Simpson, C., and Foote, M., 2010, Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic: Science, v. 327, p. 196199.CrossRefGoogle ScholarPubMed
Lamarck, J.M. de, 1816, Histoire naturelle des Animaux sans Vertèbres, Part 2: Paris, Verdière, 568 p.Google Scholar
Linnaeus, C., 1758, Systema Naturae 1 Regnum Animale, Editio decima: Lipsiae, Cura Sociatatis Zoologi Germani, 824 p.Google Scholar
Loya, Y., Puglise, K.A., and Bridge, T.C.L., eds., 2019, Mesophotic Coral Ecosystems: New York, Springer, 1003 p.CrossRefGoogle Scholar
Mansfield, W.C., 1937, Mollusks of the Tampa and Suwannee Limestones of Florida: Florida Geological Survey Geological Bulletin, v. 15, p. 1334.Google Scholar
Michelin, H., 1840–847, Iconographie zoophytologique: Paris, Bertrand, 328 p.Google Scholar
Milne Edwards, H., and Haime, J., 1860, Histoire Naturelle des Coralliaires ou polypes proprement dis. Tome 3. Suite de la section des Madréporaires apores: Paris, Libraire Encyclopédique de Roret, 326 p.Google Scholar
Muir, P.R., and Wallace, C.C., 2015, A rare ‘deep-water’ coral assemblage in a shallow lagoon in Micronesia: Marine Biodiversity, v. 46, p. 543544.CrossRefGoogle Scholar
Muir, P.R., Wallace, C.C., Done, T., and Aguirre, J.D., 2015, Limited scope for latitudinal extension of reef corals: Science, v. 348, p. 11351138.CrossRefGoogle ScholarPubMed
Muir, P.R., Pichon, M., Squire, L. Jr., and Wallace, C.C., 2018a, Acropora tenella, a zooxanthellate coral extending to 110 m depth in the northern Coral Sea: Marine Biodiversity, v. 49, p. 809814.CrossRefGoogle Scholar
Muir, P.R., Wallace, C.C., Pichon, M., and Bongaerts, P., 2018b, High species richness and lineage diversity of reef corals in the mesophotic zone: Proceedings of the Royal Society B, v. 285, n. 20181987, http://dx.doi.org/10.1098/rspb.2018.1987Google ScholarPubMed
Nylander-Asplin, H.F., 2018, Population dynamics and genotypic richness of the threatened Acropora spp. and their hybrid in the U.S. Virgin Islands [M.Sc. thesis]: Davie, Florida, Nova Southeastern University, 55 p.Google Scholar
Oken, L., 1815, Steincorallen: Lehrbuch Naturgeschichte, v. 3, p. 5974.Google Scholar
Perrin, C., 2002, Tertiary, the emergence of modern reef ecosystems: SEPM Special Publication, v. 72, p. 587621.Google Scholar
Perrin, C., and Bosellini, F.R., 2012, Paleobiogeography of scleractinian reef corals: changing patterns during the Oligocene–Miocene climatic transition in the Mediterranean: Earth Science Reviews, v. 111, p. 124.CrossRefGoogle Scholar
Petuch, E.J., 1997, A new gastropod fauna from an Oligocene back-reef lagoonal environment in west central Florida: The Nautilus, v. 110, p. 122138.Google Scholar
Petuch, E.J., 2004, Cenozoic Seas—The View from Eastern North America: Boca Raton, CRC Press, 308 p.Google Scholar
Prasetia, R., Sinniger, F., and Harii, S., 2016, Gametogenesis and fecundity of Acropora tenella (Brook, 1892) in a mesophotic coral ecosystem in Okinawa, Japan: Coral Reefs, v. 35, p. 5362.CrossRefGoogle Scholar
Precht, W.F., Vollmer, S.V., Modys, A.B., and Kaufman, L., 2019, Fossil Acropora prolifera (Lamarck, 1816) reveals coral hybridization is not only a recent phenomenon: Proceedings of the Biological Society of Washington, v. 132, p. 4055.CrossRefGoogle Scholar
Renema, W. et al. , 2016, Are coral reefs victims of their own past success?: Science Advances, v. 2, n. e1500850, https://doi.org/10.1126/sciadv.1500850CrossRefGoogle ScholarPubMed
Richards, Z.T., Miller, D.J., and Wallace, C.C., 2013, Molecular phylogenetics of geographically restricted Acropora species: implications for threatened species conservation: Molecular Phylogenetics and Evolution, v. 69, p. 837851.CrossRefGoogle ScholarPubMed
Richards, Z.T., Carvajal, J.I., Wallace, C.C., and Wilson, N.G., 2020, Phylotranscriptomics confirms Alveopora is sister to Montipora within the family Acroporidae: Marine Genomics, v. 50, n. 100703, https://doi.org/10.1016/j.margen.2019.100703CrossRefGoogle ScholarPubMed
Rögl, F., 1998, Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene): Annalen des Naturhistorichen Museums in Wien, v. 99A, p. 279310.Google Scholar
Rosser, N.L., 2015, Asynchronous spawning in sympatric populations of a hard coral reveals cryptic species and ancient genetic lineages: Molecular Ecology, v. 24, p. 50065019.CrossRefGoogle ScholarPubMed
Rosser, N.L., Thomas, L., Stankowski, S., Richards, Z.T., Kennington, W.J., and Johnson, M.S., 2017, Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora: Proceedings of the Royal Society B, v. 284, n. 20162182, https://doi.org/10.1098/rspb.2016.2182Google ScholarPubMed
Santodomingo, N., Wallace, C.C., and Johnson, K.G., 2015, Fossils reveal a high diversity of the staghorn coral genera Acropora and Isopora (Scleractinia: Acroporidae) in the Neogene of Indonesia: Zoological Journal of the Linnean Society, v. 175, p. 677763.CrossRefGoogle Scholar
Scott, T.M., 2001, Text to accompany the geological map of Florida: Florida Geological Survey Open-File Report 80, 29 p.Google Scholar
Scott, T.M., 2011, Geology of the Florida Platform—Pre-Mesozoic to Recent, in Buster, N.A., and Holmes, C.W., eds., Gulf of Mexico: Origins, Water, and Biota, Volume 3: College Station, Texas A and M University Press, p. 1731.Google Scholar
Smith, A.G., Smith, D.G., and Funnell, B.M., 1994, Atlas of Mesozoic and Cenozoic coastlines: Cambridge, Cambridge University Press, 66 p.Google Scholar
Smith, K., 2015, A study of the lithological and petrographical changes across the Eocene–Oligocene transition of the Ocala and Suwannee formations in northern Florida and southern Georgia [Ph.D. dissertation]: Tallahassee, Florida State University, 51 p.Google Scholar
Stemann, T.A., 2004, Reef corals of the White Limestone Group of Jamaica, in Donovan, S.K., ed., The Mid-Cainozoic White Limestone Group of Jamaica: Cainozoic Research, v. 3, p. 83107.Google Scholar
Stolarski, J. et al. , 2016, A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change: Scientific Reports v. 6, n. 27579, https://doi.org/10.1038/srep27579CrossRefGoogle ScholarPubMed
Suzuki, G., Keshavmurthy, S., Hayashibara, T., Wallace, C.C., Shirayama, Y., Chen, C.A., and Fukami, H., 2016, Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex: Coral Reefs, v. 35, p. 14191432.CrossRefGoogle Scholar
Turak, E., and DeVantier, L., 2019, Reef-building corals of the upper mesophotic zone of the Central Indo-West Pacific, in Loya, Y., Puglise, K.A., and Bridge, T.C.L., eds., Mesophotic Coral Ecosystems: New York, Springer, p. 621651.CrossRefGoogle Scholar
Upchurch, S.B., Strom, R.N., and Nuckels, M.G., 1980, Silicification of Miocene rocks from Central Florida, in Scott, T.M., and Upchurch, S.B., eds. Miocene of the Southeastern United States: Southeastern Geological Society, Special Publication, v. 25, p. 251284.Google Scholar
Upchurch, S.B., Scott, T.M., Alfieri, M.C., Fratesi, B., and Dobecki, T.L., 2019, Geologic framework of Florida, in The Karst Systems of Florida: Cham, Springer, p. 5991.CrossRefGoogle Scholar
Vaughan, T.W., 1919, Fossil corals from Central America, Cuba, and Porto Rico, with an account of the American Tertiary, Pleistocene, and recent coral reefs: United States National Museum Bulletin, v. 103, p. 180524.Google Scholar
Veron, J.E.N., 2000, Corals of the World, Volume 1: Townsville, Australian Institute of Marine Science, 463 p.Google Scholar
Veron, J.E.N., and Wallace, C.C., 1984, Scleractinia of eastern Australia V. Family Acroporidae: Townsville, Australian Institute of Marine Science, 485 p.CrossRefGoogle Scholar
Verrill, A.E., 1902, Notes on corals of the genus Acropora (Madrepora Lam.), with new descriptions and figures of types, and of several new species: Transactions of the Connecticut Academy of Arts and Sciences, v. 11, p. 207266.Google Scholar
Wallace, C.C., 1994, New species and a new species group of the coral genus Acropora from Indo-Pacific locations: Invertebrate Taxonomy, v. 8, p. 961988.CrossRefGoogle Scholar
Wallace, C.C., 1999, Staghorn Corals of the World: Melbourne, CSIRO Publishing, 421 p.CrossRefGoogle Scholar
Wallace, C.C., 2008, New species and records from the Eocene of England and France support early diversification of the coral genus Acropora: Journal of Paleontology, v. 82, p. 313328.CrossRefGoogle Scholar
Wallace, C.C., 2012, Acroporidae of the Caribbean: Geologica Belgica, v. 15, p. 388393.Google Scholar
Wallace, C.C., and Bosellini, F.R., 2014, Acropora (Scleractinia) from the Oligocene and Miocene of Europe: species longevity, origination and turnover following the Eocene–Oligocene transition: Journal of Systematic Palaeontology, v. 13, p. 447469.CrossRefGoogle Scholar
Wallace, C.C., and Rosen, B.R., 2006, Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: implications for the evolution of modern diversity patterns of reef corals: Proceedings of the Royal Society B, v. 273, p. 975982.CrossRefGoogle ScholarPubMed
Wallace, C.C., and Wolstenholme, J., 1998, Revision of the coral genus Acropora (Scleractinia: Astrocoeniina: Acroporidae) in Indonesia: Zoological Journal of the Linnean Society, v. 123, p. 199384.CrossRefGoogle ScholarPubMed
Wallace, C.C., Done, B.J., and Muir, P.R., 2012, Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of Tropical Queensland: Memoirs of the Queensland Museum—Nature, v. 57, p. 1255.Google Scholar
Wallace, C.C., Portell, R.W., and Muir, P.R., 2020, Lineages of Acropora (staghorn) corals in the Oligocene to Miocene of Florida and SW Georgia (USA): Bollettino della Società Paleontologica Italiana, v. 59, p. 349354.Google Scholar
Weisbord, N.E., 1973, New and little-known fossil corals from the Tampa Formation of Florida: Florida Bureau of Geology, Geological Bulletin, v. 56, p. 1156.Google Scholar
Wells, J.W., 1985, Notes on Indo-Pacific scleractinian corals II. A new species of Acropora from Australia: Pacific Science, v. 39, p. 338339.Google Scholar
Xantus, J., 1860, Descriptions of three new species of starfishes from Cape St. Lucas: Proceedings of the Academy of Natural Sciences Philadelphia, v. 12, p. 568.Google Scholar