Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-27T02:59:17.175Z Has data issue: false hasContentIssue false

Diversity and systematics of Middle-Late Ordovician calcified cyanobacteria and associated microfossils from Ordos Basin, North China

Published online by Cambridge University Press:  19 October 2020

Lijing Liu*
Affiliation:
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, 710069, Xi'an, China ,
Yasheng Wu*
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China ,
Hongping Bao
Affiliation:
Research Institute of Petroleum Exploration and Development, Changqing Oilfield, Xi'an 710021, China
Hongxia Jiang
Affiliation:
Hebei GEO University, Shijiazhuang050031, China
Lijing Zheng
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China ,
Yanlong Chen
Affiliation:
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, 710069, Xi'an, China ,
*
*Corresponding authors
*Corresponding authors

Abstract

Calcified cyanobacteria are of considerable research value for reconstructing the ecology of Paleozoic and Mesozoic benthic communities on carbonate platforms due to their ability to produce oxygen and fix nitrogen and CO2. The diversity and abundance of calcified cyanobacteria was initially suggested to have declined in the Middle and Late Ordovician, although more recent work suggests that complex and diverse assemblages persisted throughout the Ordovician. Here, calcified cyanobacteria and associated microfossil flora from the Middle and Late Ordovician of the Ordos Basin, North China Block, are systematically described for the first time based on 1330 thin sections from seven outcrop profiles and four drill cores. In total, there are 18 species belonging to 16 genera, including a new species, Proaulopora ordosia n. sp. Girvanella, Subtifloria, Acuasiphonoria, Xianella, and Oscillatoriaceae gen. indet. are assigned to Osillatoriales of cyanobacteria; Ortonella, Hedstroemia, Cayeuxia, Zonotrichites, Proaulopora, and Phacelophyton are assigned to Nostocales of cyanobacteria; and Garwoodia, Renalcis, Izhella, Rothpletzella, and Wetheredella are assigned to calcified Microproblematica. A literature survey of Ordovician microfloral assemblages shows that cyanobacteria and associated microfossils occur in reef, open platform, lagoon, and tidal facies. Most genera occur on at least two independent blocks, and many have a cosmopolitan distribution in similar sedimentary facies. Our research suggests that calcified cyanobacteria and associated microfossils formed complex ecosystems and played greater ecological roles on carbonate platforms during the late Middle and Late Ordovician than was previously thought.

UUID: http://zoobank.org/1812ccf8-136c-4cff-92ba-faeaf06523ef

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoshkina, A.I., 1996, Ordovician reefs of the Ural Mountains, Russia: a review: Facies, v. 35, p. 18.CrossRefGoogle Scholar
Antoshkina, A.I., 1998, Organic buildups and reefs on the Palaeozoic carbonate platform margin, Pechora Urals, Russia: Sedimentary Geology, v. 118, p. 187211.CrossRefGoogle Scholar
Antropov, I.A., 1955, Blue-green algae of the Devonian of the central region of the Russian Platform: Kazansk Universitet Uchenye Zapiski, v. 115, p. 4153. [in Russian]Google Scholar
Beresi, M., and Heredia, S., 2003, First occurrence of Epiphyton, cyanobacteria from the Middle Ordovician of the Ponón Trehué Formation, Mendoza Province, Argentina, in Albanesi, G.L., Beresi, M.S., and Peralta, S.H., eds., Ordovician from the Andes: Proceedings of the 9th International Symposium on the Ordovician System, Serie Correlación Geológica, v. 17, p. 257262.Google Scholar
Bian, L.Z., and Zhou, X.P., 1990, Calcareous algae from the Sanqushan Formation (Upper Ordovician) at the border area between Zhejiang Province and Jiangxi Province: Journal of Nanjing University Geoscience, v. 2, p. 123. [in Chinese with English summary]Google Scholar
Bornemann, J.G., 1887, Geologische Algenstudien: Jahrbuch der königliche preussischen geologischen Landesanstalt, Berlin, v. 1887, p. 116134.Google Scholar
Bourque, P.A., Mamet, B., and Roux, A., 1981, Algues siluriennes du Synclinorium de la Baie des Chaleurs, Québec, Canada: Revue de Micropaléontologie, v. 24, p. 83126.Google Scholar
Cao, J.Z., Feng, Q., Zhao, W., Zhou, S.C., Wang, Q.Y., Liu, Z., Lu, Y. J., and Li, Y.L., 2011, Sequence stratigraphy of Ordovician strata in the south part of Ordos area: Acta Sedimentological Sinica, v. 29, p. 286292. [in Chinese with English summary]Google Scholar
Chafetz, H.S., and Guidry, S.A., 1999, Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: Bacterial vs. abiotic precipitation: Sedimentary Geology, v. 126, p. 5774.CrossRefGoogle Scholar
Chapman, F., 1908, On the relationship of the genus Girvanella, and its occurrence in the Silurian limestones of Victoria: Report of the Australasian Association for the Advancement of Science, Adelaide, v.11, p. 377386.Google Scholar
Charpy, L., Casareto, B.E., Langlade, M.J., and Suzuki, Y., 2012, Cyanobacteria in coral reef ecosystems: a review: Journal of Marine Biology, v. 2012, p. 110.CrossRefGoogle Scholar
Chen, X.S., 1996. Patch reef of Late Ordovician stromatoporoids and corals in Yushan, Jiangxi: Oil & Gas Geology, v. 17, p. 326332. [in Chinese, with English abstract]Google Scholar
Chuvashov, B.I., 1965, Foraminifera and algae from the Upper Devonian deposits of the western slope of the central and southern Urals, in Devonian and Permian Foraminifera of the Urals: Institute of Geology, Ural Branch of the USSR, Sverdlovsk, Sbornik po stratigrafii, v. 8, p. 3154. [in Russian]Google Scholar
Chuvashov, B.I., Luchinina, V.A., and Shuysky, V.P., 1987, Fossil calcareous algae: morphology, systematics and study methods: USSR Academy of Sciences, Siberian Branch, Transactions of the Institute of Geology and Geophysics, Novosibirsk, v. 674, p. 1225. [in Russian]Google Scholar
Copper, P., 1976, The cyanophyte Wetheredella in Ordovician reefs and off-reef sediments: Lethaia, v. 9, p. 273281.CrossRefGoogle Scholar
Dangéard, L., and Doré, F., 1957, Observations nouvelles sur les Algues et les Stromatolithes du Cambrien de Carteret (Manche): Bulletin de la Société Géologique de France, v. 7, p. 10691075.CrossRefGoogle Scholar
Danielli, M.C., 1981, The fossil alga Girvanella Nicholson and Etheridge: Bulletin of the Natural History Museum, Geology Series, v. 35, p. 79107.Google Scholar
Dragastan, O., 1985, Review of Tethyan Mesozoic algae of Romania, in Toomey, D.F., and Nitecki, M.H., eds., Paleoalgology: Contemporary Research and Applications: Berlin, Springer-Verlag, p. 101161.CrossRefGoogle Scholar
Dragastan, O., 1993, New criteria for the classification of the ‘Porostromata’ algae: Revista Espanola de Micropaleontologia, v. 25, p. 5989.Google Scholar
Dragastan, O., and Richter, D.K., 2011, Stromatolites and calcareous algae of Müunder Formation (Tithonian–Berriasian) from NW Germany: Acta Palaeontologica Romaniae, v. 7, p. 139168.Google Scholar
Elenkin, A.A., 1949, Monographie algarum Cyanophycearum aquidulcium et terrestrium infinibus URSS inventarum: Izdatelstvo AN SSSR, Moscow, Pars specialis (Systematica), Fascicie, II, p. 9851908. [In Russian]Google Scholar
Elliott, G.F., 1964, Zonotrichites (calcareous algae) from the Arabian Triassic: Eclogae Geologicae Helvetiae, v. 56, p. 179181.Google Scholar
Fang, Y.T., Bian, L.Z., Shi, G.J, Yu, J.L, Chen, M.J, and Yu, J.H., 1993, Patch reefs and their communities of Late Ordovician Sanqushan Formation at Wangjiaba, Yushan County, Jiangxi Province: Journal of Nanjing University Geoscience, v. 29, p. 670679. [in Chinese, with English abstract]Google Scholar
Feng, Q., Gong, Y.M., and Riding, R., 2010, Mid-Late Devonian calcified marine algae and cyanobacteria, South China: Journal of Paleontology, v. 84, p. 569587.CrossRefGoogle Scholar
Feng, Z.Z., Zheng, X. J., Bao, Z.D., Jin, Z.K., Wu, S.H., He, Y.B., Peng, Y.M., Yang, Y.Q., Zhang, J.Q., and Zhang, Y.S., 2014, Quantitative lithofacies palaeogeography: Journal of Palaeogeography, v. 3, p. 134.Google Scholar
Flügel, E., 2004, Microfacies of Carbonate Rocks: Analysis, Interpretation and Application: Berlin, Heidelberg, New York, Springer-Verlag, 976 p.Google Scholar
Fournie, D., 1967, Les Porostromata du Paléozoïque. Étude bibliographique: Bulletin du Centre de Recherches, Pau-SNPA, v. 1, p. 2141.Google Scholar
Frollo, M.M., 1938, Sur un nouveau genre de Codiacée du Jurassique supérieur des Carpates Orientales: Bulletin de la Société Géologique de France, v. 8, p. 269271.Google Scholar
Garwood, E.J., 1914, Some new rock building organisms from the lower Carboniferous Beds of Westmorland: Geological Magazine, v. 5, p. 265271.CrossRefGoogle Scholar
Garwood, E.J., 1931, The Tuedian beds of northern Cumberland and Roxburghshire east of the Liddel Water: Quarterly Journal of the Geological Society of London, v. 87, p. 97157.CrossRefGoogle Scholar
Geitler, L., 1925, Cyanophyceae. A. Pascher's Die Süsswasserflora von Deutschlands, Ösrerreichs und der Schweiz. Band 12: Jena, Gustav Fisher, 450 p.Google Scholar
Golubic, S., and Seong-Joo, L., 1999, Early cyanobacteria fossil record: preservation, palaeoenvironments and identification: European of Phycology, v. 34, p. 339348.CrossRefGoogle Scholar
Guilbault, J.P., and Mamet, B.L., 1976, Ordovician codiaceaes from the St Lawrence Lowlands: Canadian Journal of Earth Sciences, v. 13, p. 636660.CrossRefGoogle Scholar
Guo, Y.R., Zhao, Z.Y., Fu, J. H., Xu, W.L., Shi, X.Y., Sun, L.Y., Gao, J.R., Zhang, Y.L., Zhang, Y.Q., and Liu, J.B., 2012, Sequence lithofacies paleogeography of the Ordovician in Ordos Basin, China: Acta Petrolei Sinica, v. 33, p. 95109. [in Chinese with English summary]Google Scholar
Guo, Y.R., Zhao, Z.Y., Shi, X.Y., and Gao, J.R., 2014, Sequence stratigraphy of the Ordovician system in the Ordos Basin: Acta Sedimentological Sinica, v. 32, p. 4460. [in Chinese with English summary]CrossRefGoogle Scholar
Harland, T.L., and Pickerill, R.K., 1988. Patch reefs in Ordovician limestones, St-Honoré, Quebec, in Geldsetzer, H.H.J., James, N.P., and Tebbutt, G.E., eds., Reefs—Canada and Adjacent Areas: Canadian Society of Petroleum Geologists, Memoir, v. 13, p. 201207.Google Scholar
Høeg, O.A., 1932, Ordovician algae from the Trondheim area, in Kiær, J., The Hovin Group in the Trondheim area: Skrifter utgitt av det Norske Videnskaps–Akademi i Oslo, I. Mathematisk-Naturvidenskabelig Klasse, v. 4, p. 6396.Google Scholar
Hoffman, L., 1999, Marine cyanobacteria in tropical regions: diversity and ecology: European Journal of Phycology, v. 34, p. 371379.CrossRefGoogle Scholar
Hofmann, H.J., 1975, Stratiform Precambrian stromatolites, Belcher Islands, Canada: relations between silicified microfossils and microstructure: American Journal of Science, v. 275, p. 11211132.CrossRefGoogle Scholar
Hou, F.H., Fang, S.X., Dong, Z.X., Li, L., Lu, S.X., Wu, Y., and Chen, Y.N., 2003, The developmental characters of sedimentary environments and lithofacies of Middle Ordovician Majiagou Formation in Ordos Basin: Acta Sedimentological Sinica, v. 21, p. 106112. [in Chinese with English summary]Google Scholar
Huang, B., Yan, Y., Piper, J.D.A., Zhang, D.H., Yi, Z.Y., Yu, S., and Zhou, T.H., 2018, Paleomagnetic constraints on the paleogeography of the East Asian blocks during late Paleozoic and early Mesozoic times: Earth-Science Reviews, v. 186, p. 836.CrossRefGoogle Scholar
Ishchenko, A.A., and Radionova, E.P., 1981, On the morphological features and systematic position of the genus Wetheredella Wood 1948: Questions of Micropaleontology, v. 24, p. 140151 [in Russian].Google Scholar
Jarochowska, E., and Munnecke, A., 2014, The Paleozoic problematica Wetheredella and Allonema are two aspects of the same organism: Facies, v. 20, p. 651662.CrossRefGoogle Scholar
Jiang, H.X., Bao, H.P., Sun, L.Y., Wu, Y.S., and Diao, J.B., 2013, Tabulate and rugose corals from the Ordovician reefs in the southern edge of the Ordos Basin and their paleoecology significance: Acta Palaeontologica Sinica, v. 52, p. 243255. [in Chinese with English summary]Google Scholar
Jin, J., Rong, J., and Zhan, R., 2011, Oldest known Dicoelosia and Epitomyonia, deep water brachiopods from the Beiguoshan formation (middle Katian, Upper Ordovician), Shaanxi, North China: Palaeontology, v. 54, p. 907922.CrossRefGoogle Scholar
Jing, X.C., Zhou, H.R., and Wang, X.L., 2016, Biostratigraphy and biofacies of the middle Darriwilian (Ordovician) conodonts from the Laoshidan section in the western margin of the North China Craton: Marine Micropaleontology, v. 125, p. 5165.CrossRefGoogle Scholar
Johnson, J.H., 1945, Calcareous algae of the upper Leadville Limestone near Glenwood Springs, Colorado: Bulletin of the Geological society of America, v. 56, p. 829848.CrossRefGoogle Scholar
Johnson, J.H., 1961, Jurassic algae from the subsurface of the Gulf Coast: Journal of Paleontology, v. 35, p. 147151.Google Scholar
Kano, A., and Fujishiro, N., 1997, Facies and paleoecology of the Late Ordovician (Caradoc–Ashgill) stromatoporoid bioherms of Tasmania, Australia: Facies, v. 37, p. 6584.CrossRefGoogle Scholar
Kazmierczak, J., and Kempe, S., 1992, Recent cyanobacterial counterparts of Paleozoic Wetheredella and related problematic fossils: Palaios, v. 7, p. 294304.CrossRefGoogle Scholar
Kazmierczak, J., and Kempe, S., 2004, Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia—discussion: Journal of Sedimentary Research, v. 74, p. 314317.CrossRefGoogle Scholar
Kobluk, K.W., and David, R., 1980, Upper Ordovician (Richmondian) cavity-dwelling (coelobiontic) organisms from southern Ontario: Canadian Journal of Earth Sciences, v. 17, p. 16161627.CrossRefGoogle Scholar
Konhauser, K., and Riding, R. 2012, Bacterial biomineralization, in Knoll, A.H., Canfield, D.E., and Konhauser, K.O., eds., Fundamentals of Geobiology: Chichester, John Wiley & Sons, p. 105130.CrossRefGoogle Scholar
Korde, K.B., 1957, New representatives of siphonous algae: Mater Principles Palaeontology, v. 1, p. 6775. [in Russian]Google Scholar
Korde, K.B., 1961, Cambrian algae of the southeastern Siberian platform: USSR Academy of Sciences, Transactions of the Institute of Palaeontology, Moscow, v. 89, p. 1147. [in Russian]Google Scholar
Korde, K.B., 1973, Cambrian algae: USSR Academy of Sciences, Transactions of the Institute of Palaeontology, Moscow, v. 39, p. 1349. [in Russian]Google Scholar
Kuss, J., 1990, Middle Jurassic calcareous algae from the circum-Arabian area: Facies, v. 22, p. 5985.CrossRefGoogle Scholar
Kwon, S.W., Park, J., Choh, S.J., Lee, D.C., and Lee, D.J., 2012, Tetradiid-siliceous sponge patch reefs from the Xiazhen Formation (late Katian), Southeast China: a new Late Ordovician reef association: Sedimentary Geology, v. 267, p. 1524.CrossRefGoogle Scholar
Lavoie, D.A., 1995, Late Ordovician high-energy temperate-water carbonate ramp, southern Quebec, Canada: implications for Late Ordovician oceanography: Sedimentology, v. 42, p. 95116.CrossRefGoogle Scholar
Lee, J.H., and Riding, R., 2016, Xianella: a new mat-forming calcified cyanobacterium from the Middle–Late Ordovician of North China: Papers in Palaeontology, v. 2, p. 439449.CrossRefGoogle Scholar
Lee, J.H., Hong, J., Lee, D.J., and Choh, S.J., 2016, A new Middle Ordovician bivalve-siliceous sponge-microbe reef-building consortium from North China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 457, p. 2330.CrossRefGoogle Scholar
Lee, M., Sun, N., Choh, S.J., and Lee, D.J., 2014, A new Middle Ordovician reef assemblage from North-Central China and its palaeobiogeographical implications: Sedimentary Geology, v. 310, p. 3040.CrossRefGoogle Scholar
Li, Q., Li, Y., and Kiessling, W., 2015, The first sphinctozoan-bearing reef from an Ordovician back-arc basin: Facies, v. 61, p. 19.CrossRefGoogle Scholar
Liu, C.Y., Zhao, H.G., Wang, F., and Chen, H., 2005, Attributes of the Mesozoic structure on the west margin of the Ordos Basin: Acta Geological Sinica, v. 79, p. 737747. [in Chinese]Google Scholar
Liu, L.J., Yang, Z.L., and Wu, Y.S., 2011, Calcified cyanobacteria from the Upper Ordovician Lianglitage Formation, Tazhong Basin, Xinjiang: Acta Palaeontologica Sinica, v. 50, p. 492510. [in Chinese with English summary]Google Scholar
Liu, L.J., Wu, Y.S., Jiang, H.X., and Riding, R., 2016a, Calcified rivulariaceans from the Ordovician of the Tarim Basin, Northwest China, Phanerozoic lagoonal examples, and possible controlling factors: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 448, p. 371381.CrossRefGoogle Scholar
Liu, L.J., Wu, Y.S., Yang, H. J., and Riding, R., 2016b, Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China: systematics and significance: Journal of Systematic Palaeontology, v. 14, p. 183210.CrossRefGoogle Scholar
Liu, L.J., Wu, Y.S., Jiang, H.X, Wu, N.Q., and Jia, L.Q., 2017, Paleoenvironmental distribution of Ordovician calcimicrobial associations in the Tarim Basin, Northwest China: Palaios, v. 32, p. 462489.CrossRefGoogle Scholar
Luchinina, V.A, 1975, Palaeoalgological characteristics of the Early Cambrian of the Siberian Platform: USSR Academy of Sciences, Transactions of the Institute of Geology and Geophysics, Siberian Branch, Novosibirsk, v. 216, p. 199. [in Russian]Google Scholar
Mamet, B., and Roux, A., 1975, Algues Dévoniennes et Carbonifères de la Téthys occidentale: Revue de Micropaléontologie, v. 18, p. 134187.Google Scholar
Mamet, B., and Shalaby, H., 1995, Algues benthiques Ordoviciennes de la plateforme du Saint-Laurent: Revue de Micropaléontologie, v. 38, p. 229244.Google Scholar
Mamet, B., Shalaby, H., Lapointe, M., and Gauthier, L., 1992, Algues Ordoviciennes et Siluriennes de L’Île D'Anticosti (Québec, Canada): Revue de Micropaléeontologie, v. 35, p. 211248.Google Scholar
Maslov, V.P., 1949, The alga Girvanella, its ecology and stratigraphic significance: Bulletin Moskovskogo Obshchestva isoytatelei prirody, v. 54, p. 89100. [in Russian]Google Scholar
Maslov, V.P., 1956, The fossil calcareous algae of the USSR: Transactions of the USSR Academy of Sciences, Geological Science Sections, v. 160, p. 1301. [in Russian]Google Scholar
Metcalfe, I., 2006, Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context: Gondwana Research, v. 9, p. 2446.Google Scholar
Min, X., Hua, H., Liu, L.J., Sun, B., Cui, Z. H., and Dai, Q.K, 2020, A diverse calcified cyanobacteria assemblage in the latest Ediacaran: Precambrian Research, v. 342: 105669. https://doi.org/10.1016/j.precamres.2020.105669CrossRefGoogle Scholar
Monty, C.L.V., 1967, Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas: Annales de la Société Géologique de Belgique, v. 90, p. 55100.Google Scholar
Nicholson, H.A., 1888, On certain anomalous organisms which are concerned in the formation of some of the Palaeozoic limestones: Geological Magazine, v. 25, p. 15.CrossRefGoogle Scholar
Nicholson, H.A., and Etheridge, R., 1878, A monograph of the Silurian fossils of the Girvan District in Ayrshire with special reference to those contained in the ‘Gray Collection: Edinburgh, Blackwood, 341 p.CrossRefGoogle Scholar
Nikitin, I.F., Gnilovskaya, M.B., Zhuravleva, I.T, Luchinina, V.A., and Myagkova, E.I., 1974, Anderken bioherm range and the history of its origin, in Betekhtina, O.A., and Zhuravleva, I.T., eds., Environment and Life in the Geological Past: Paleoecological Problems: Trudy, Instituta Geologii i Geofiziki, Akademiya Nauk SSSR, Sibirskoe Otdelenie, Akademiya Nauk SSSR, v. 169, p. 122159 [in Russian].Google Scholar
Nitecki, M.N., Webby, B.D., Spjeldnaes, N., and Zhang, Y.Y., 2004, Receptaculitids and Algae, in Webby, B.D., Droser, M.L., Paris, F., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 336347.Google Scholar
Ott, E., 1966, Die gesteinsbildenden Kalkalgen im Schlauchkar (Karwendelgebirge): Jahrbuch des Vereins zum Schütze der Alpenpflanzen und -Tiere, v. 31, p. 152159.Google Scholar
Poncét, J., 1986, Les algue scalcaires du Paléozoïque inférieur de la Baie d'Hudson et de l'Archipel arctique canadien: Bulletin Centres Recherche Exploration—Production Elf-Aquitaine, v. 10, p. 259282.Google Scholar
Pratt, B.R., 1984, Epiphyton and Renalcis: diagenetic microfossils from calcification of coccoid blue-green algae: Journal of Sedimentary Petrology, v. 54, p. 948971.Google Scholar
Pratt, B.R., 2001, Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud: Geology, v. 29, p. 763766.Google Scholar
Pratt, B.R., and Haidl, F.M., 2008, Microbial patch reefs in Upper Ordovician Red River strata, Williston Basin, Saskatchewan: signal of heating in a deteriorating epeiric sea: in Pratt, B.R., and Holmden, C., eds., Dynamics of Epeiric Seas: Geological Association of Canada, Special Paper, v. 48, p. 303340.Google Scholar
Racki, G., and Sobon-Podgorska, J., 1992, Givetian and Frasnian calcareous microbiotas of the Holy Cross Mountains: Acta Palaeontologica Polonica, v. 37, p. 255289.Google Scholar
Reitlinger, E.A., 1959, Atlas of microscopic organic remains and problematica of Siberia's oldest deposits: Transactions of Institute of Geology, USSR Academy of Sciences, Moscow, v. 25, 62 p. [in Russian]Google Scholar
Reitlinger, E.A., 1960, Microscopic organic remains and problematica from the ancient strata of the Siberian Platform: 21st International Geological Congress, Moscow, 140148. [in Russian]Google Scholar
Riding, R., 1977, Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll: Palaeontology, v. 20, p. 3346.Google Scholar
Riding, R., 1991, Calcified cyanobacteria, in Riding, R., ed., Calcareous Algae and Stromatolites: Berlin, Springer-Verlag, p. 5587.CrossRefGoogle Scholar
Riding, R., 1992, Temporal variation in calcification in marine cyanobacteria: Journal of the Geological Society of London, v. 149, p. 979989.CrossRefGoogle Scholar
Riding, R., 2006, Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition: Geobiology, v. 4, p. 299316.CrossRefGoogle Scholar
Riding, R., and Fan, J.S., 2001, Ordovician calcified algae and cyanobacteria, northern Tarim Basin subsurface, China: Palaeontology, v. 44, p. 783810.CrossRefGoogle Scholar
Riding, R., and Toomey, D.F., 1972, The sedimentological role of Epiphyton and Renalcis in Lower Ordovician mounds, southern Oklahoma: Journal of Paleontology, v. 46, p. 509519.Google Scholar
Riding, R., and Voronova, L., 1985, Morphological groups and series in Cambrian calcareous algae, in Toomey, D.F., and Nitecki, M.H., eds., Paleoalgology: Contemporary Research and Applications: Berlin, Springer-Verlag, p. 5678.CrossRefGoogle Scholar
Rong, H., Jiao, Y.Q., Wang, Y.B., Wu, L.Q., and Wang, R., 2014, Distribution and geologic significance of Girvanella within the Yijianfang Ordovician reef complexes in the Bachu area, West Tarim Basin, China: Facies, v. 60, p. 685702.CrossRefGoogle Scholar
Rothpletz, A., 1913, Die Kalkalgen, Spongiostromen und einige andere Fossilien aus dem Obersilur Gottlands: Sveriges Geologiska Undersökning, Serie Ca, v. 10, 57 p.Google Scholar
Ruppel, S.C., and Walker, K.R., 1984. Petrology and depositional history of a Middle Ordovician carbonate platform: Chickamauga Group, northeastern Tennessee: Geological Society America Bulletin, v. 95, p. 568583.2.0.CO;2>CrossRefGoogle Scholar
Schirrmeister, B.E., Patricia, S.B., and David, W., 2016, Cyanobacterial evolution during the Precambrian: International Journal of Astrobiology, v. 15, p. 187204.CrossRefGoogle Scholar
Schopf, J. W., 2012. The fossils record of cyanobacteria, in Whitton, B.A., ed., Ecology of Cyanobacteria II: Their Diversity in Space and Time: New York, Springer, p. 1536.CrossRefGoogle Scholar
Servais, T., Owen, A.W., Harper, D.A.T., Kröger, B., and Munnecke, A., 2010, The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension : Palaeogeography, Palaeoclimatology, Palaeoecology, v. 294, p. 99119.CrossRefGoogle Scholar
Shen, Y., and Neuweiler, F., 2016, Taphocoenoses and diversification patterns of calcimicrobes and calcareous algae, Ordovician, Tarim Basin, China: Canadian Journal of Earth Sciences, v. 53, p. 110.CrossRefGoogle Scholar
Stanier, R.Y., 1974, Division I. The Cyanobacteria. 22, in Buchanan, R.E., and Gibbons, N.E., eds., Bergey's Manual of Determinative Bacteriology: Baltimore, William & Wilkins Co., 964 p.Google Scholar
Stephens, N., and Sumner, D.Y., 2002, Renalcis as fossilized biofilm clusters: Palaios, v. 17, p. 225236.2.0.CO;2>CrossRefGoogle Scholar
Turner, E.C., James, N.P., and Narbonne, G., 2000, Taphonomic control on microstructure in early Neoproterozoic reefal stromatolites and thrombolites: Palaios, v. 15, p. 87111.2.0.CO;2>CrossRefGoogle Scholar
Ulrich, E.O., and Bassler, R.S., 1904, A revision of the Paleozoic Bryozoa, part I: on genera and species of Ctenostomata: Smithsonian Miscellaneous Collections, v. 45, p. 256294.Google Scholar
Vologdin, A.G., 1932, Archaeocyaths of Siberia, part 2. Cambrian fauna of Altai limestones: Leningrad, State of Science and Technology in Geology, 106 p. [in Russian]Google Scholar
Vologdin, A.G., 1937, Archaeocyatha and the results of their study in the USSR: Problems of Paleontology, v. 2–3, p. 453–500. [in Russian]Google Scholar
Voronova, L.G., 1976, Calcareous algae of the Precambrian-Cambrian boundary deposits of the Siberian platform, in Voronova, L.G., and Radionova, E.P., eds., Palaeozoic Algae and Microphytolites: Institute of Geology, USSR Academy of Sciences, Moscow, p. 385, 156–183, 212–214. [in Russian]Google Scholar
Walker, K.R., 1972, Community ecology of the Middle Ordovician Black River Group of New York State: Geological Society of America Bulletin, v. 83, p. 24992524.CrossRefGoogle Scholar
Wang, G., Zhang, Y.F., Yang, L.M., Wang, Z.Y., and Li, Y., 2011, Transgressive sequences throughout the Yijianfang Formation (Darriwilian, Middle Ordovician) at well Gucheng 4, Tarim block, NW China: Acta Micropalaeontologica Sinica, v. 28, p. 137143. [in Chinese with English summary].Google Scholar
Wang, J.P., Li, Y., Zhang, Y.Y., Yang, H.J., and Huang, Z.B., 2009, Cyanobacterial community from the reef mound of the Lianglitag Formation (Upper Ordovician), Bachu, Xinjiang, NW China: Acta Micropalaeontologica Sinica, v. 26, p. 139147. [in Chinese with English summary]Google Scholar
Wang, J.P., Deng, X.J., Wang, G., and Li, Y., 2012, Types and biotic successions of Ordovician reefs in China: Chinese Science Bulletin, v. 57, p. 11601168.CrossRefGoogle Scholar
Wang, Z.H, Bergström, S.M., Zhen, Y.Y, and Zhang, Y.D., 2013, New discovery of conodonts from the Upper Ordovician Pingliang Formation of Pingliang, Gansu, China and its significance: Acta Micropalaeontologica Sinica, v. 30, p. 123131. [in Chinese with English summary]Google Scholar
Wang, Z.T, Zhou, H.R., Wang, X.L., Jing, X.C., and Zhang, Y.S., 2015, Volcanic event records at the southwestern Ordos Basin: the message from geochemical and zircon U-Pb geochronology of K-bentonites from Pingliang Formation, Shaanxi and Gansu region: Acta Petrologica Sinica, v. 31, p. 26332654. [in Chinese with English summary]Google Scholar
Wang, Z.T., Zhou, H.R., Wang, X.L., Jing, X.C., Zhang, Y.S., Yuan, L.P., and Shen, Z.J., 2016, The Ordovician Basin prototype in the northwest Ordos Basin: constraint from the Ordovician sedimentary respond in the Helan-Zhuozi Mountains: Geological Review, v. 62, p. 10411061. [in Chinese with English summary]Google Scholar
Wayne, M.A., 1971, Paleoenvironmental, algal structures, and fossil algae in the upper Cambrian of Central Texas: Journal of Sedimentary Petrology, v. 41, p. 205216.Google Scholar
Webby, B.D., 2002. Patterns of Ordovician reef development, in Kiessling, W., Flügel, E., and Golonka, J., eds., Phanerozoic Reef Patterns: SEPM Special Publication No. 72, p. 129179.CrossRefGoogle Scholar
Webby, B.D., Zhen, Y.Y., and Percival, I.G., 1997, Ordovician coral- and sponge-bearing associations: distribution and significance in volcanic island shelf to slope habitats, eastern Australia: Boletín de la Real sociedad Española de Historica Natural. v. 92, p. 163175.Google Scholar
Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., 2004, The Great Ordovician Biodiversification Event: New York, Columbia University Press, 484 p.CrossRefGoogle Scholar
Wethered, E., 1890, On the occurrence of the genus Girvanella in oolitic rocks, and remarks in oolitic structure: Quarterly Journal of the Geological Society of London, v. 46, p. 270283.CrossRefGoogle Scholar
Whitton, B., 2012, Ecology of Cyanobacteria II: Their Diversity in Space and Time: Berlin, Springer, 753 p.CrossRefGoogle Scholar
Wood, A., 1941, The lower Carboniferous calcareous algae Mitcheldeania Wethered and Garwoodia gen. nov.: Proceedings of the Geologists’ Association, v. 52, p. 216226.CrossRefGoogle Scholar
Wood, A., 1948, Sphaerocodium’, a misinterpreted fossil from the Wenlock Limestone: Proceedings of the Geologists’ Association, v. 59, p. 922.CrossRefGoogle Scholar
Wood, A., 1957, The type-species of the genus Girvanella (calcareous algae): Palaeontology, v. 1, p. 2228.Google Scholar
Wray, J.L., 1967, Upper Devonian calcareous algae from the Canning Basin, Western Australia: Colorado School of Mines, Professional Contributions, v. 3, 76 p.Google Scholar
Xie, G.A., Zhang, Q.L., and Guo, L.Z., 2003, The genesis and hydrocarbon distribution of western and southern margins of Paleozoic foreland basin and central paleouplift in Ordos Basin: Acta Petrolei Sinica, v. 24, p. 1923. [in Chinese with English summary]Google Scholar
Yang, Y.T., Li, W., and Ma, L., 2005, Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos Basin: a multicycle cratonic basin in Central China: AAPG Bulletin, v. 89, p. 255269.CrossRefGoogle Scholar
Ye, J., Yang, Y.Y., Xu, A.D., Zheng, B.Y., Zuo, Z. F., Zhou, Y., Li, J.Z., Li, Z.X., Song, G.C., Yong, Y.X., Zhang, B.R., and Zhang, J.S., 1995, Ordovician reefs in south-western margin Ordos Basin: Beijing, Geological Publishing House, 63 p. [in Chinese with English summary]Google Scholar
Zhang, Y.D., Zhan, R.B., Zhen, Y.Y, Wang, Z.H, Yuan, W.W., Fang, X., Ma, X., and Zhang, J.P., 2019, Ordovician integrative stratigraphy and timescale of China: Science China Earth Sciences, v. 62, p. 6188.CrossRefGoogle Scholar
Zhen, Y.Y., Zhang, Y.D., Wang, Z.H., and Percival, I.G., 2015, Huaiyuan epeirogeny—shaping Ordovician stratigraphy and sedimentation on the North China platform: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 448, p. 363370.CrossRefGoogle Scholar
Zheng, L.J., Bao, H.P., Wu, Y. S., Sun, L.Y., Jiang, H.X, Ren, J.F., Huang, Z.L., and Liu, L.J., 2018, Distinguishing coral reef facies from coral-bearing open platform facies: examples from Ordovician Ordos Basin, Northwest China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 495, p. 7286.CrossRefGoogle Scholar