Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-l2zqg Total loading time: 0.208 Render date: 2021-09-16T22:59:55.836Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Two new early Asteroidea (Echinodermata) and early asteroid evolution

Published online by Cambridge University Press:  02 April 2020

Daniel B. Blake
Affiliation:
Department of Geology, 3028 NHB, 1301 W Green St., Urbana, Illinois, 61801
Forest J. Gahn
Affiliation:
Department of Geology, Brigham Young University—Idaho, Rexburg, Idaho, 83460
Thomas E. Guensburg
Affiliation:
IRC, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois, 60605

Abstract

Aerliceaster nexosus n. gen. n. sp. (Echinodermata), one of the oldest of known asteroids, is based on six specimens from the Floian (Early Ordovician) Garden City Formation of Idaho, and Kolataster perplexus n. gen. n. sp. is based on two specimens from the Sandian (Late Ordovician) Mifflin Formation of Illinois. Although the asterozoan skeleton is subdivided into few ossicular categories, evolutionary derivations of all the categories are not fully established, and therefore published evaluations differ. Beginning with phylogenetic work placing asteroid ancestry within the Somasteroidea together with the new taxa described herein, aspects of early asteroid morphology are evaluated and ambiguities in need of further study identified. Uncertainties are considered to be founded in rapid early asterozoan diversification and the scanty fossil record.

UUID: http://zoobank.org/b43d07cc-c8fb-4a84-bc6f-40aa6e0daea2

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrain, J.M., McAdams, N.E.B., and Westrop, S.R., 2009, Trilobite biostratigraphy and revised bases of the Tulean and Blackhillsian Stages of the Ibexian Series, Lower Ordovician, western United States: Memoirs of the Association of Australian Palaeontologists, v. 37, p. 541610.Google Scholar
Blainville, H.M. de., 1830, Zoophytes: Dictionnaire des Sciences Naturelles: Strasbourg, F.G. Levrault, 60 p.Google Scholar
Blake, D.B., 1978, The taxonomic position of the modern sea star Cistina Gray, 1840: Proceedings of the Biological Society of Washington, v. 91, p. 234241.Google Scholar
Blake, D.B., 1995, A new asteroid genus from the Carboniferous of Ireland and its phylogenetic position and paleoecology: Irish Journal of Earth Sciences, v. 14, p. 6580.Google Scholar
Blake, D.B., 2007, Two Late Ordovician asteroids (Echinodermata) with characters suggestive of early ophiuroids: Journal of Paleontology, v. 81, p. 14761485.CrossRefGoogle Scholar
Blake, D.B., 2013, Early asterozoan (Echinodermata) diversification: a paleontologic quandary: Journal of Paleontology, v. 87, p. 353372.CrossRefGoogle Scholar
Blake, D.B., 2014, Two Ordovician asterozoans (Echinodermata) of problematic affinities: Journal of Paleontology, v. 88, p. 11631173.CrossRefGoogle Scholar
Blake, D.B., 2018, Toward a History of the Paleozoic Asteroidea (Echinodermata): Bulletins of American Paleontology, no. 394, 96 p.CrossRefGoogle Scholar
Blake, D.B., and Guensburg, T.E., 1993, New Lower and Middle Ordovician stelleroids (Echinodermata) and their bearing on the origins and early history of the stelleroid echinoderms: Journal of Paleontology, v. 67, p. 103113.CrossRefGoogle Scholar
Blake, D.B., and Guensburg, T.E., 2015, The class Somasteroidea (Echinodermata, Asterozoa): morphology and occurrence: Journal of Paleontology, v. 89, p. 465486.CrossRefGoogle Scholar
Blake, D.B., and Hotchkiss, F.H.C., 2004, Recognition of the asteroid (Echinodermata) crown group: implications of the ventral skeleton: Journal of Paleontology, v. 78. p. 359370.2.0.CO;2>CrossRefGoogle Scholar
Blake, D.B., Bielert, F., and Bielert, U., 2006, New early crown-group asteriods (Echinodermata; Triassic of Germany): Palaeontologische Zeitschrift, v. 80, p. 284295.CrossRefGoogle Scholar
Blake, D.B., Guensburg, T.E., Sprinkle, J., and Sumrall, C., 2007, A new, phylogenetically significant Lower Ordovician asteroid (Echinodermata): Journal of Paleontology, v. 82, p. 12541262.Google Scholar
Blake, D.B., Donovan, S.K., Mah, C.L., and Dixon, H.L., 2015a, Asteroid (Echinodermata) skeletal elements from upper Oligocene deposits of Jamaica and Antigua: Geological Magazine, v. 152, p. 10431056. doi: 10.1017/S0016756815000096.CrossRefGoogle Scholar
Blake, D.B., Zamora, S., and García-Alcalde, J.L., 2015b, A new Devonian asteroid-like ophiuroid from Spain: Geologica Acta, v. 13, p. 335343.Google Scholar
Blake, D.B., Tintori, A., and Kolar-Jurkovsek, T., 2017, New Triassic Asteroidea (Echinodermata) specimens and their evolutionary significance: Rivista Italiana di Paleontologia e Stratigrafia, v. 123, p. 319333.Google Scholar
Blake, D.B., Gahn, F.J., and Guensburg, T.E., 2019, An Early Ordovician (Floian) asterozoan (Echinodermata) of problematic class-level affinities: Journal of Paleontology, v. 94, p. 358365.CrossRefGoogle Scholar
David, B., and Mooi, R., 1998, Major events in the evolution of echinoderms viewed by the light of embryology, in Mooi, R., and Telford, M., eds., Echinoderms: San Francisco: Rotterdam, Balkema, p. 21–28.Google Scholar
Fell, H.B., 1963, The phylogeny of sea-stars: Philosophical Transactions of the Royal Society, London B, v. 246, p. 381435.CrossRefGoogle Scholar
Fewkes, J.W., 1888, On the development of calcareous plates of Asterias: Bulletin of the Museum of Comparative Zoology, v. 17, p. 156.Google Scholar
Gale, A.S., 2011, The phylogeny of post-Paleozoic Asteroidea (Neoasteroidea, Echinodermata): Special Papers in Palaeontology, v. 38, 112 p.Google Scholar
Gale, A.S., 2013, Phylogeny of the Asteroidea, in Lawrence, J., ed., Starfish: Biology and Ecology of the Asteroidea: Baltimore, MD, Johns Hopkins University Press, p. 214.Google Scholar
Gale, A.S., 2015, Evolution of the odontophore and origin of the neoasteroids, in Zamora, S., and Rábano, L., eds., Progress in Echinoderm Paleontology: Cuadernos del Museo Geominero, v. 19, p. 67–69.Google Scholar
Gregory, J.W., 1899, On Lindstromaster and the classification of the palaeasterids: Geological Magazine, New Series, dec. 4, v. 6, p. 341354.Google Scholar
Jell, P.A., 2014, A Tremadocian asterozoan from Tasmania and a late Llandovery edrioasteroid from Victoria: Alcheringa, v. 38, p. 528540.CrossRefGoogle Scholar
Kano, Y.T., Komatsu, M., and Oguro, C., 1974, Notes on the development of the sea-star Leptasterias ochotensis simispinis, with special reference to skeletal system: Proceedings of the Japanese Society of Systematic Zoology, v. 10, p. 4553.Google Scholar
Kolata, D.R., 1973, Middle Ordovician echinoderms from northern Illinois and southern Wisconsin: The Paleontological Society Memoir 7, 74 p.Google Scholar
Kolata, D.R., 2011, Cambrian and Ordovician Systems (Sauk Sequence and Tippecanoe I Subsequence), in Kolata, D.R., and Nimz, C.K., eds., Geology of Illinois: Urbana-Champaign, University of Illinois at Urbana-Champaign, p. 136157.Google Scholar
Komatsu, M., 1975, On the development of the sea-star, Astropecten latespinosus Meissner: Biological Bulletin, v. 148, p. 4959.CrossRefGoogle Scholar
Mah, C.L., and Blake, D.B., 2012, Global diversity and phylogeny of the Asteroidea (Echinodermata): PLoS One 7(4): e35644 doi:10.1371/journal.-pone.0035644.CrossRefGoogle Scholar
MacBride, E.W., 1896, The development of Asterina gibbosa: The Quarterly Journal of the Microscopical Society, v. 38, p. 339411.Google Scholar
McKnight, D.G., 1975, Classification of somasteroids and asteroids (Asterozoa: Echinodermata): Journal of the Royal Society of New Zealand, v. 5, p. 1319.CrossRefGoogle Scholar
Mikulás, R., 1992, The ichnogenus Asteriarefs: palenvironmental trends: Vestnik Ceského geologického ústavu, v. 67, p. 423433.Google Scholar
Mooi, R., and David, B., 1998, Evolution within a bizarre phylum: homologies of first echinoderms: American Zoologist, v. 38, p. 965974.CrossRefGoogle Scholar
Mooi, R., and David, B., 2000, What a new model of skeletal homologies tells us about asteroid evolution: American Zoologist, v. 40, p. 326339.Google Scholar
Mooi, R., and David, B., 2008, Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes: Annual Review of Ecology, Evolution, and Systematics, v. 39, p. 4362.CrossRefGoogle Scholar
Mooi, R., David, B., and Marchand, D., 1994, Echinoderm skeletal homologies: classical morphology meets modern phylogenetics, in David, B., Guille, A., Féral, J.P., and Roux, M., eds., Echinoderms through Time: Rotterdam, Balkema, p. 8795.Google Scholar
Owen, H.G., 1965, The British Palaeozoic Asterozoa Table of contents, supplement and index: Palaeontographical Society of London Monograph (for 1964), p. 541–583.Google Scholar
Philip, G.M., 1965, Ancestry of sea-stars: Nature, v. 208, p. 766768.CrossRefGoogle Scholar
Schuchert, C., 1915, Revision of Paleozoic Stelleroidea with special reference to North American Asteroidea: Bulletin U.S. National Museum, v. 88, 311 p.Google Scholar
Shackleton, J.D., 2005, Skeletal homologies, phylogeny and classification of the earliest asterozoan echinoderms: Journal of Systematic Palaeontology, v. 3, p. 29114.CrossRefGoogle Scholar
Smith, A.B., and Jell, P.A., 1990, Cambrian edrioasteroids from Australia and the origin of starfishes: Memoirs of the Queensland Museum, v. 28, p. 715778.Google Scholar
Spencer, W.K., 1914–1940, The British Palaeozoic Asterozoa: Palaeontographical Society of London Monograph, pts. 1–10 (for 1913–1940), 540 p.Google Scholar
Spencer, W.K., 1914, The British Palaeozoic Asterozoa: Palaeontographical Society of London Monograph, pt. 1 (for 1913), p. 156.Google Scholar
Spencer, W.K., 1916, The British Palaeozoic Asterozoa: Palaeontographical Society of London Monograph, pt. 2 (for 1915), p. 57108.Google Scholar
Spencer, W.K., 1918, The British Palaeozoic Asterozoa: Palaeontographical Society of London Monograph, pt. 3 (for 1916), p. 109168.CrossRefGoogle Scholar
Spencer, W.K., 1922, The British Palaeozoic Asterozoa: Palaeontographical Society of London Monograph, pt. 5 (for 1920), p. 197236.CrossRefGoogle Scholar
Spencer, W.K., 1925, The British Palaeozoic Asterozoa: Palaeontographical Society of London Monograph, pt. 6 (for 1922), p. 237324.CrossRefGoogle Scholar
Spencer, W.K., 1951, Early Palaeozoic starfish: Philosophical Transactions of the Royal Society, London B, v. 235, p. 87129.Google ScholarPubMed
Spencer, W.K., and Wright, C.W., 1966, Asterozoans, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, pt. U, Echinodermata, Volume 3(1): Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. U4U107.Google Scholar
Sprinkle, J., 1983, Patterns and problems in echinoderm evolution, in Jangoux, M., and Lawrence, J.M., eds., Echinoderm Studies, v. 1, Rotterdam, A.A. Balkema, p. 118.Google Scholar
Stürtz, B., 1893, Über versteinerte und lebende Seesterne: Verhandlungen des naturhistorischen Vereins der preussischen Rheinlande, v. 50, p. 192.Google Scholar
Thoral, M., 1935, Deuxième Thèse. Contribution à l'étude paléontologique de l'Ordovicien inférieur de la Montagne Noire et Révision sommaire de la faune cambrienne de la Montagne Noire, Sér. A, no. 1541, no. D'Ordre, p. 2407: Montpellier, Imprimerie de la manufacture de la charité (Pierre-Rouge), 363 p.Google Scholar
Ubaghs, G., 1953, Classe des Stelléroïdes, in Piveteau, J., ed., Traité de Paléontologie: v. 3, p. 774842, Paris, Masson et Cie.Google Scholar
Ubaghs, G., 1967, General characters of Echinodermata, in Moore, R.C., ed., Treatise on invertebrate paleontology, pt. S, Echinodermata 1(1): Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. S3S60.Google Scholar
Villier, L., Brayard, A., Bylund, K.G., Jenks, J.F., Escarguel, G., Olivier, N., Stephen, D.A., Vennin, E., and Fara, E., 2017, Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids: Journal of Systematic Palaeontology, v. 16, p. 395415.CrossRefGoogle Scholar
Willman, H.B., and Kolata, D.R., 1978, The Platteville and Galena Groups in northern Illinois: Illinois State Geological Survey Circular 592, 75 p.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Two new early Asteroidea (Echinodermata) and early asteroid evolution
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Two new early Asteroidea (Echinodermata) and early asteroid evolution
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Two new early Asteroidea (Echinodermata) and early asteroid evolution
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *